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A Ray-Triangle Intersection Algorithm
by Jeff Arenberg

{ucbvax, uscvax} ! trwrblcsed-pyramid!arenberg

n the field of computer generated imagery,

the technique of ray tracing can pioduce very

realistic scenes, but at a large computational
cost. A ray tracing program spends most of the
time calculating the intersection between a mathe-
matical light ray and the mathematical description
of the scene's geometry. This article describes an
algorithm to efficiently calculate the point of inter-
section between a ray and a planar triangular sur-
face in R This algorithm will also find the bary-
centric coordinates of the intersection point, which
is useful for surface normal interpolation and shad-
ing calculations.

A triangle in %3 must be described by ex-
actly three vectors. In this algorithm, the first vec-
tor, Py), traverses from the coordinate system origin
to one of the three vertices and the other two vec-
tors, P} and P,, traverse from the first vertex to the
other two vertices. This is illustrated in Figure 1.

A ray P is described by the vector equation
P=0+Dut.

X
Figure 1 - A Triangle in R

For each triangle in the scene, the following

preprocessing is performed. The normal vector is
found as:

P x Py

N=— =
IPIXP2|

The three vectors, P, P,, and N; are linear-
ly independent and therefore constitute a basis of
R3 [Strang80]. A transformation matrix T is con-
structed as shown below and the inverse of T is cal-
culated and stored for later use.

P
construct T = P5

N

find 7" =[ VoT| v,T| Vo]
and save Vj

At this point the vectors P; and P, may be
discarded, so the storage requirement of this algo-
rithm, P( and the three V; vectors, is only one vec-
tor more than the minimum description of the trian-
gle.

Premultiplying by the matrix, T -1 , trans-
forms vectors in the normal %3 space to a new
space, labeled R'3. This vector space has the spe-
cial property that the vectors P; and P, transform
to the coordinate axes x' and y' in R'3 while the
normal vector, N, transforms to z'. In *®3 space
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X

Figure 2 - A Triangle in R'3

the triangle appears as shown in Figure 2. The ori-
gin of % is shifted from the origin of R by P,

Note, each triangle has a different R'3 space
associated with it but, in their respective R'>, all
triangles appear as pictured above. In this space,
the intersection calculation is reduced to the
straightforward task of finding a point on the x'/y’'
plane.

The intersection calculation proceeds as fol-
lows:

0, =V, ¢(Py - O)
if O, =0 return FALSE

D,=VyeD
if D, =0 return FALSE

If D', = 0, then the ray is parallel to the
plane of the triangle in both %3 and R3. If 0',=0,
then the ray origin lies on the plane of the triangle.
In either case, the routine returns, otherwise the
value of ¢ is found as:
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! Q‘Z
D,

t

Because T~ is a linear transformation, the
calculation of t is invariant over the change of ba-
sis. That is, the ray will intersect the triangle in
both %3 and K3 for the same value of ¢ . This al-
lows for an additional check to be performed if a
global best value of t has been determined, in addi-
tion to checking the sign of ¢ .

if t <O ort> tpest return FALSE

The intersection point in ‘EK3 is found from
the original definition of the ray :

P=0+Dt

The x' and y' coordinates of the intersection
are now found by transforming the point P to R3.
The intersection point is inside the triangle if and

onlyifx'>0,y'>0and x'+y' < 1.

X' =Vpe (P- Pg)
if X < Oor x' > 1 return FALSE

y=Vye(P- P
if y < O0or x'+y > 1 return FALSE

If the algorithm makes it past the last condi-
tion, then the ray does indeed intersect the triangle.
Shading algorithms that perform either normal vec-
tor or intensity interpolation require the barycentric
coordinates of the intersection point relative to the
vertices of the triangle. These coordinates are
found from the K3 intersection point as:
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BCo=1-x-Y
BC;= X

BCa= Yy

where the coordinate BC,, is related to the
triangle vertex defined by P, BC; to Py+P; and
BC2 to P0+P2.

If a given ray does intersect the triangle un-
der consideration, then this algorithms will have
computed 4 vector sums, 4 vector dot products, 1
vector scaling and 1 scalar division. This does not
necessarily conform to fewer floating point opera-
tions than any of the other documented algorithms,
although all of the operations involved here will
benefit from implementation on parallel processing
hardware. The real advantage of this algorithm,
however, is when the ray does not intersect the tri-
angle, and in most ray traced images, the vast ma-
jority of ray/triangle combinations considered fail
to intersect. In these cases, it is guaranteed that at
least one of the algorithm's numerous test condi-
tions will be true and the routine will exit early,
saving the algorithm from unnecessary computa-
tion.

The algorithm described in the article deter-
mines if a ray intersects a planar triangle in R3.
The storage requirement is one vector more than
the minimum required to define a triangle, the
computational requirement is modest and the algo-
rithm will always take less time if the ray and trian-
gle do not intersect. Thus, this algorithm is well
suited to use in the field of image generation by ray
tracing. e

References
[Strang80] "Linear Algebra and Its Applications"”,

Gilbert Strang, Academic Press, New York,
1980.

BC; gBC,

P
BC,

Vo \Z
P = BCyPg + BC1P; + BCyP,

Geometrical Interpretation
of Barycentric Coordinates
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Barycentric Co-ordinates
for Ray-Triangle Intersections

by Rod G. Bogart

(bogart@cs.utah.edu)
nother way to think of barycentric With this image, it is obvious that r+s+¢
coordinates is by the relative areas must equal one. If 7, s, or ¢ go outside the range
of the subtriangles defined by the zero to one, P will be outside the triangle.

intersection point P and the triangle vertices.

Figure 1 - Finding a point P

If the area of triangle 123 is A, then the area
of P23 is rA. Area 12P is sA and area 1P3 is tA.
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By using the above are relationships, the
following equations define 7, s and .

N = triangle normal = 12 x 13

(1_15>< l_é)ON

S =
IN]
. _(12x1P).N
IN]
r=1-(s+t)

In actual code, it is better to avoid the di-
vide and the square root. So, you can set s equal to
the numerator, and then test if s is less than zero or
greater than INI2. For added efficiency, preprocess
the data and store INIZ in the triangle data structure.
Even for extremely long thin triangles, this method
is accurate and numerically stable. @
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D-Sampling: An Additiondl
Heuristic for Adaptive Sampling

by Andrew Woo

Dept. Computer Science, University of Toronto, Toronto, Ontario M5S 1A4
andreww@dgp.toronfo.edu

ne particular anti-aliasing technique

in ray tracing is named adaptive sam-

pling [Whitted80]. It is basically a
heuristic and faster version of supersampling, and
the general technique works as follows: for each
pixel, point samples are taken at the corners of the
pixel. If their colour values differ by some small
tolerance (user specified), further point samples
are necessary. Then the pixel is divided into four

quadrants, and each quadrant needs sampling infor- -

mation at their respective corners. Further sampling
within the quadrant is necessary if their corner
samples differ by the tolerance. Again, additional
four sub-quadrants are necessary.

In summary, this is a recursive approach,
creating a hierarchy of quadrants as needed. This
sampling is usually halted with the provisal of the
following criteria: the maximum recursive depth of
the sampling is reached, or the corner sample's col-
our values differ by less than the tolerance. Com-
bined with jittering [Cook86], this anti-aliasing is
usually sufficient.

Motivation for D-Sampling

The main problem with adaptive sampling
is that the recursive procedure may be halted due to
the second criterion while there still remains a
great deal of activity within the quadrant not sam-
pled. Thus the resultant image may not reflect the
true database.

A visible example of this problem comes from an
infinite plane with an associated checkerboard tex-
ture. If the plane is parallel to the X-Y axis and the
eye view direction is only some small degree off
the X-Y axis, then the checkerboard further off into
the infinite horizon will appear pretty lousy.

D-Sampling

From this problem, it is necessary to have
another criteria for halting adaptive sampling. We
refer to this as D-sampling, where D stands for dis-
tance. The larger the hit distance, the more subdivi-
sion into quadrants are done (ie. automatically
more samples even when the corner samples differ
little). This is done in realization that the probabili-
ty of having missed activity between corner sam-
ples is proportional to the cross-sectional area gen-
erated by the four corner samples. And assuming a
perspective view, a frustum can be formed from the

eye view and the four samples. The cross-sectional
area of the frustum increases as it gets farther
away.

A good approximation of this cross-
sectional area evaluation is the hit distance, availa-
ble from ray-surface intersection calculations. Ac-
tually, the maximum distance among the four sam-
ples is taken as the hit distance. If all hit distances
are large, then by our new criteria, further subdivi-
sion and sampling is necessary. If the difference
between the corner sample hit distances is large,
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then the second criterion should require further
subdivision. If not, we can again force further sub-
division in the event of drastically changing surface
slopes.

We repeat this for reflection and refraction
rays. The total sum of the distance of the entire
path travelled by the rays is taken as the hit dis-
tance. If there are few bounces, then it just boils
down to the same reasoning as the above para-
graphs. If there are many bounces, then it is likely
that a lot of activity lies between samples.

D-Sampling Applied to Filtering

The D-sampling approach can also be ap-
plied to filtering. Currently, the filtering in our im-
plementation takes a weighted average of the 8
neighbouring colour values (a 3x3 Bartlett win-
dow).

Filtering usually has little effect if the hit
distance is sufficiently small. This is assuming that
close-by hits are sampled correctly already. Thus
filtering can be avoided for such cases.

Filtering also does quite poorly when
neighbouring pixels are not properly sampled. It
seems to work best when the colour values repre-
sent a good approximation to the true colour val-
ues. With large hit distances, adequate (but not nec-
essarily sufficient) sampling should be available
using D-sampling. Thus with the inclusion of filter-
ing, it should improve the appearance of the image
even more.

No Guarantees

This extension is merely a quick hack, and
it is not intended to solve all aliasing problems.
The hit distance tolerance can be a user specified
value. For most images, this heuristic does not do
any additional work (negligible), and the image
will look no different. However, for some images
(like the checkerboard), this should improve the

May 1989

image appearance without having to resort to su-
persampling. A good example of this improvement
is apparent when rendering the infinite checker-
board described above. @
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A Review of
Multi-Computer Ray Tracing

by David A. J. Jevans

University of Calgary . Department of Computer Science , Calgary, Alberta T2N IN4
uucp: ...{ubc-cs utal.alberta}lcalgaryljevans

1 Introduction

cenes are getting larger and more com-

plex, films are getting longer, and the

need for high quality rendering has nev-
er been greater. Ray tracing provides an elegant but
computationally expensive solution. Multi-
computer ray tracing provides a means for speed-
ing up ray tracing in a cost effective manner.

Most early research focused on hardware
for multi-computer ray tracing. With the recent
proliferation of commercial multi-computers cur-
rent research is directed toward the software prob-
lems of parallel ray tracing. Research efforts are
primarily directed towards solving problems of
load and memory balance.

2 Methods

There are two reasons to consider multi-
processing for ray tracing. The first and most obvi-
ous is to take advantage of parallel computation to
speed up rendering, as suggested by Whitted
[Whitted80]. Many small processors can be net-
worked to provide performance equal to or exceed-
ing that of a much larger and more powerful ma-
chine.

The second reason is to take advantage of
distributed memory. As scene descriptions become
more complex this is becoming a more important
feature of multi-processor ray tracing. Realistic an-
imation sequences often have scenes consisting of
hundreds of thousands or even millions of poly-
gons. To keep these in memory requires an expen-
sive single processor with huge amounts of RAM
and disk space. It is often more cost effective to
use many smaller less expensive processors with
small amounts of memory.

Volume 3, Number 1




. The Ray Tracing News.

3 Frame Parallelism

Perhaps the most simple method for taking
advantage of multi-processors for ray tracing is to
render multiple frames on multiple computers.
This is very effective when creating animation, al-
though it provides no speedup for rendering a sin-
gle frame, and provides no access to distributed
memory [Leister88].

4 Hardware Solutions

Early research into multi-computer ray trac-
ing focused on hardware solutions.

4.1 LINKS-1

A simple and obvious way of using multi-
computers to speed up ray tracing is to duplicate
the entire object space on each processor. Nishimu-
ra [Nishimura83] used this approach with the
LINKS-1. Jobs consisting of regions of the viewing
screen pixels are passed to idle processors for ren-
dering. Load balancing is achieved by creating
more jobs than there are machines. The LINKS-1
has been used to create numerous ray traced anima-
tion sequences.

This method does not take advantage of dis-
tributed memory, since the entire object space must
be duplicated on each machine. Complex scenes
require large amounts of memory on each proces-
sor. The method works well, however, on a shared
memory multi-processor such as a BBN Butterfly,
where a single copy of the scene is available to all
processors via the global memory.

Processor utilization on a Butterfly decreas-
es as more processors are added since memory con-
flicts occur more often. This can be reduced by
taking advantage of ray coherence by caching areas
of the scene in local processor memory.

May 1989

4.2 Mesh Machine

Spatial subdivision methods lend them-
selves to multi-computers since area of space can
be distributed among the nodes in the system. Pro-
cessors are responsible for intersecting rays with
the objects that lie inside the areas of space that
they have been allocated.

Cleary [Cleary83] suggested partitioning
object space with a 3D uniform voxel grid and allo-
cating each voxel to a processor of a mesh connect-
ed array. As rays traverse a scene they move
through voxels and are passed between processors.

The Mesh Machine, developed at the Uni-
versity of Calgary, was composed of a network of
Motorolla 68000 based processors configured as a
2D array. Each processor was connected to its 4
nearest neighbors by a small amount of shared
memory, used for passing messages.

4.3 Vector

Plunkett and Bailey [Plunkett85] present an
algorithm for vectorizing ray tracing. This doesn't
take full advantage of the parallelism inherent in
ray tracing and requires costly vector processing
hardware.

4.4 Connection Machine

As reported by Crow [Crow88], Karl Sims
has written a ray tracing program for the Thinking
Machines SIMD Connection Machine. Processing
Elements intersect rays with all objects in a scene
in parallel. 512 by 512 pixel images consisting of
several spheres are rendered in tens of seconds.

4.5 Other

Hardware specific work on algorithms for
hypercube architectures and transputer arrays is
presented by [Caubet88] and [Bouatouch88]. This
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work provides little in the way of new algorithms
and may even serve to cloud the important issues in
multi-computer ray tracing.

5 Algorithms

Later research has focused on the software
aspect of multi-processor ray tracing. These meth-
ods utilize distributed memory and processing.
Since the object space is not duplicated on all ma-
chines, rays must pass from processor to processor
as they traverse the scene. This leads to problems
of load and memory balancing and reducing the
number of messages in the system.

5.1 Dippé and Swensen

Dippé and Swensen [Swensen84] attacked
the problem of load balancing by adjusting the sub-
division of a scene during the rendering process. A
scene is subdivided by a grid of general hexahedra,
and these areas are distributed among the available
processors. As rays traverse the scene they are
passed from processor to processor. Rays must be
intersected with the general hexahedra in order to
determine which processor to move to; an expen-
sive procedure. If many rays pass through the
same area of space, a bottleneck occurs. To allevi-
ate the bottleneck, the shape of the area is changed.
This requires altering the shape of neighboring are-
as, re-sorting objects into the new subdivisions, and
possibly passing objects between processors.

If most rays pass through a very small sub-
set of the scene, adjustment of all the areas on all
processors may be required. This method balances
computational load, but may cause severe memory
balancing problems as processor with small areas
will use small amounts of memory, and processors
near the edge of the grid will contain most of the
objects in the scene.

10

5.2 Nemoto and Omachi

Nemoto and Omachi [Nemoto86] proposed
a method for subdividing object space among pro-
cessors using regular cubes instead of general hexa-
hedra. This method allows for faster traversal of
rays through the scene since iterative methods can
be used [Fujimoto86] instead of intersecting rays
with general hexahedra.

Load balancing is accomplished by sliding
the boundaries between abutting cubes. As with
Dippé's method, objects which lie inside each ad-
justed rectangular volume must be re-sorted and
passed between adjacent cubes. An advantage to
this algorithm is that only one neighboring volume
is affected by the sliding operation.

5.3 Kobayashi and Nakamura

A new approach suggested by Kobayashi
and Nakamura [Kobayashi87] differentiates be-
tween two types of processors in the system: inter-
section processors, and shading processors. Inter-
section processors are responsible for intersecting
rays with the objects in a sub-volume of space.
Rays are passed among intersection processors as
they propagate through a scene. When a ray inter-
sects an object, the result is passed to a shading
processor. Shading processors generate shade
trees, collect illumination information, and output
the results.

The object space is subdivided with an oc-
tree [Glassner84] and distributed over the intersec-
tion processors. If a branch of the octree resides
over several processors, vertical traversal requires
passing rays between them. In order to reduce ver-
tical traversals, Kobayashi builds an enhanced oc-
tree; the adaptive division graph. Octree nodes con-
tain pointers to their brethren and to adjacent
nodes. An algorithm for building the adaptive divi-
sion graph is presented. This method provides
memory balancing, but no load balancing algo-
rithms are presented.

Volume 3, Number 1
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5.4 Scherson and Caspary

Scherson and Caspary [Scherson88] adapt
hierarchical object extents [Kay86] to multi-
computers. The scene's bounding extent tree is du-
plicated down to a pre-determined level on each
processor. Lower levels of the tree are distributed
among the processors. When rays begin their tra-
versal of the scene, they may initially be processed
through the extent tree by any free processor. If
rays can be determined to miss the scene without
traversing the tree to a great depth, the load balance
on the system remains optimal.

‘When a ray must traverse the tree to a deep-
er level than that stored on all processors, it must
be passed to the processor which contains the re-
quired branch. If many rays must be checked to
the full depth of the tree, load balancing can deteri-
orate. No mechanisms are provided for balancing
this computation.

5.5 Pearce

Pearce [Pearce87] implemented the algo-
rithm proposed by Cleary on a network of Corvus
workstations and on the Mesh Machine. The ob-
ject space is subdivided by a regular voxel grid and
cubic areas of the voxel grid are allocated to pro-
cessors. The Cleary [Cleary88] voxel skipping al-
gorithm is used to traverse rays through the grids
on local machines. When a ray leaves a voxel grid
it is passed to a neighboring processor.

Optimisations to the algorithm are present-
ed, although load balancing was not implemented.

5.6 Kobayashi and Nishimura

Kobayashi and Nishimura [Kobayashi88]
present a method which uses regular voxel subdivi-
sion, as in [Pearce87], but provides load balancing.
The object space is subdivided by a regular voxel
grid. Instead of allocating blocks of voxels to pro-
cessors, voxels are allocated individually among
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the processors. Adjacent voxels do not necessarily
reside on the same processor. Rays are propagated
through the scene using the Fujimoto voxel skip-
ping algorithm. As rays pass through voxels they
are passed between processors.

Static load balancing is achieved by the al-
location of voxels among the processors. If many
rays pass through adjacent voxels, the computation
does not occur on a single processor, as in the
Pearce implementation. A form of dynamic load
balancing is achieved by creating "clusters" of pro-
cessors which all contain the same voxels. When a
ray enters a voxel in a cluster, it may be processed
by any processor in the cluster.

Message traffic is high in this algorithm
since rays must pass from processor to processor as
they pass from neighboring voxels. This is waste-
ful if voxels are empty. Dynamic load balancing
occurs only on a cluster level. If all rays pass
through the voxels contained on a single cluster,
the other clusters may remain idle. The Fujimoto
voxel skipping algorithm makes little sense if each
voxel resides on a separate processor; each itera-
tion of the DDA algorithm must occur on a differ-
ent processor. This requires passing the loop varia-
bles from processor to processor with each ray.
This is not explained in the paper.

An extension of their algorithm
[Kobayashi89] is to reallocate voxels among the
processors or clusters after each frame of the ani-
mation is rendered, according to load balance sta-
tistics collected during the rendering.

6 Optimistic Multi-Computer
Ray Tracing

A process oriented technique which shares a
basis with the Kobayashi and Nishimura algorithm,
although developed independently, is presented in
[Jevans89]. It uses the principles of optimistic com-
putation and cancellation [Jefferson85]. The object
space is subdivided with a regular voxel grid. Vox-
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els are allocated randomly among processors. Each
processor has a ray generation process which is re-
sponsible for rendering some subsection of th pix-
els. Processors also run many voxel intersection
processes which are each responsible for intersect-
ing rays with the objects inside a voxel.

The ray generation processes use the Cleary
voxel skipping algorithm to traverse rays through
the scene. The Cleary algorithm stores voxels a a
one dimensional grid instead of a three dimensional
one to reduce storage requirements and allow fast
traversal. At each node, instead of a sparse matrix
of non-empty voxels, a hashtable is maintained.
Entries in the hashtable are machine addresses of
intersection processes for non-empty voxels and
are indexed by the one dimensional voxel coordi-
nate.

A ray generator starts iterating the Cleary
algorithm. The index of the voxel through which
the ray is passing is updated each time through the
loop. At each iteration, the hashtable is consulted.
If the current voxel is non-empty an entry will be
found. An intersection request message is sent to
the intersection process for the voxel, which per-
forms the intersection test and returns a positive in-
tersection message to the generator if the ray inter-
sected an object.

Generators do not wait for intersection mes-
sages to arrive. They optimistically assume that
the ray did not intersect with any of the objects in
the voxel. The generator continues traversing the
ray through the scene, sending intersection request
messages to any other non-empty voxels in its path.

When the ray has been traversed through th entire
voxel grid, a new ray is generated and the process
repeats.

If a ray generator process receives a positive
intersection message indicating that a ray has inter-
sected an object in a voxel, the optimistic assum-
tion has failed. All intersection requests made for
voxels later in the ray's path should not have been
made. These requests must be cancelled.

12

To enable cancellation, a tree of intersection
requests must be maintained for each ray. When-
ever an intersection request message is sent, a node
is added to the intersection tree. When a positive
intersection message arrives, antimessages are sent
for all intersection requests that were made for vox-
els later in the ray's path. Secondary rays for reflec-
tion, refraction, and shadowing are fired at this
time. These create branches in the intersection
tree, and must be cancelled if an earlier intersection
message arrives.

Intersection request messages are numbered
according to the distance of the voxel along the
ray's path. Intersection processors order their mes-
sage input queues based on this numbering This
reduces erroneous computation by encouraging
processors to intersect rays with voxels that lie ear-
lier in a ray's path, first. When an antimessage ar-
rives, the corresponding positiv message i deleted
from the input queue. If an antimessage arrives af-
ter the computation has been performed, it is dis-
carded.

7 Load Balancing

This approach lends itself to several simple
and very effective load balancing schemes.

« Static Load Balancing. Since each voxel is asso-
ciated with its own intersection process, voxels
ca be allocated evenly among processors.
Randomly allocating voxel intersection pro-
cesses to processors is a simple means of help-
ing to ensure even load balance among proces-
sors. This technique has proven effective fo
multi-processor simulations [Nicol88].

= Balancing Ray Generation. As there are many
ray generators in the system, a simple method
of ensuring an even distribution of load on all
processors is to have each generator working
on a different area of the screen Since rays
fired from pixels on opposite sides of the
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screen rarely travel through the same voxels
(the opposite side of the ray coherence coin)
[Kaplan85] this can help keep all processors
busy.

« Process Migration. If a processor becomes too
highly loaded in relation to its neighbors, de-
termined by examining the sum of the lengths
of its and its neighbor's process input queues,
it can migrate intersection processes. When a
voxel intersection process is migrated, its ob-
jects and input queue must be moved with it to
the new processor. Messages which arrive for
the migrated proces are forwarded to the new
processor and a message is returned to the
sending processor informing it of the migra-
tion so that further messages can be sent di-
rectly.

« Process Cloning. If an intersection process be-
comes too highly loaded, determined by exam-
ining the lengths of the input queues of all pro-
cesses on a processor, it can clone itself and
migrate the clone to another processor. Once
this is done it is necessary to inform some pro-
cessors of the duplicate voxel intersection pro-
cess in order to split the load. This is accom-
plished by the original intersection process
forwarding some of the ray messages bound
for it to the clone. As it does this, it sends a
message to the originating processor as to the
location of the clone to where its messages
have been forwarded.

« Clone Reaping When a clone process deter-
mines that it is underloaded it can request to be
killed. A message is sent to its parent request-
ing that the clone be allowed to die and re-
route all its messages to the parent. If the par-
ent deems this appr priate, by weighing the re-
quest against any other death requests, the pro-
cess is sent a message allowing it to die. The
clone sends its input queue to the parent and
dies. The processor which hosted the clone
must forward all messages for the clone to the
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parent, and inform all senders of the routing
change. Underloaded parents may request that
clones kill themselves and return their input
queues to the parent. A process may not die if
it has clones of its own which are still alive.

8 Discussion

This method uses algorithms originally de-
veloped for distributed simulation; optimistic com-
putation and cancellation. These methods have
shown speedup on a variety of parallel processors
[Lomow88] [Fujimoto89]. Since ray intersections
for a single ray can be processed in parallel, the al-
gorithm introduces a new level of parallelism not
previously exploited in multi-computer ray tracers.
This, combined with the load balancing techniques
described above, allows large processor configura-
tions to be used efficiently.

A prototype of the algorithm is being devel-
oped for networks of SUN workstations, the BBN
Butterfly, and a Meiko transputer array.

Q@ Future Trends

Early research into multi-computer ray trac-
ing focused on hardware solutions. Recent algorith-
mic research has been hardwar independent. This
is a trend that should be encouraged. Multi-
computers and multi-processors are being produced
by numerous manufacturers and are being supplied
with operating systems which are advancing to the
point that the underlying hardware is no longer vis-
ible to the user.

Hardware evolution is clearly directed to-
wards small shared memory multi-processors and
large message passing multi-computers. Shared
memory multi-processors are typically more expen-
sive than similarly sized multi-computers, and are
not available in large configurations, the largest be-
ing the 128 node BBN Butterfly [Jenkins89]. Mul-
ti-computers are more easily expandable and are
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available in much larger configuration such as the
1024 node NCUBE hypercube and 400 node Mei-
ko transputer array.

Load balancing and the often overlooked
problem of memory balancing are the key issues in
parallel processor ray tracing. Algorithms to tackle
these problems must be designed with modern
large scale multi-computers in mind. Algorithms
must be scalable and, as the numbe of processors
available continues to grow, must exploit parallel-
ism not yet apparent in the ray tracing method.

Most of the algorithms reviewed in this arti-
cle have been simulated and have not been imple-
mented on a multi-computer. The validity of these
algorithms remains to be seen. @
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A Proposal for a Hybrid
Voxel Traversal Approach

by Andrew Woo

Department of Computer Science,University of Toronto, Toronto, Ontario M5S 1A4
andreww@dgp.toronto.edu

Intfroduction

oxel Traversal has proven to be an

effective intersection culler for ray

tracing [Whit80]. There are basical-
ly two variations of voxel traversal: one utilizing
uniform-sized voxels (USV) [Fuji86] [Snyd87]
[Aman87] etc., and one utilizing variable-sized
voxels (VSV) [Glas84] [Kapl85] etc. USV ap-
proaches use linear data structures such as the 3d
grid, while VSV approaches use hierarchical data
structures such as the octree, BSP tree or k-d tree.

The following article intends to look into

the pros and cons of these two approaches of voxel
traversal. From this, a hybrid voxel traversal algo-
rithm will be proposed so that various advantages
from both variations can be retained at little addi-
tional cost.

Interpretation of USV and VSV

I perceive VSV as a noble idea, but one that
does poorly on many scenes due to the expensive
traversal cost, slow access to voxel information,
and the preimposed (preprocessed) hierarchy:
sometimes the subdivision is not enough, resulting
in many intersection tests, and other times, rays
never reach the voxels that are deeply subdivided.
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I perceive USV as the culler which allows for rapid
determination of a candidate set of objects to inter-
sect with (from the voxel's list of object pointers);
i.e. a first level culler. In the case of uniformly dis-
tributed environments, these candidate sets tend to
contain few objects and thusit is sufficient just to
intersect against these objects. However, the candi-
date sets do not always contain a small number of
objects due to certain dense regions; which is when
USV does poorly.

In the upcoming section, a hybrid voxel tra-
versal algorithm will be proposed. It uses USV as a
preprocessed, first level culler and VSV as a lazy
evaluated, second level culler. Since it is built on
top of USYV, it should retain most of the properties
and advantages of USV (points 1,2,3). It does not
attempt to improve upon the traversal cost (point 5)
issue, but attempts to improve on more pressing
USV issues, such as dynamic space partitioning
(point 4) and handling of sparse environments

(point 7).

The Hybrid Voxel
Traversal Approach

The hybrid voxel traversal approach uses
the USV approach as the ground work. The 3d grid
structure is the main data structure to store the uni-
form voxel information. But within each voxel is
an octree containing what we refer to as subvoxels.
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These subvoxels are constructed only if the voxel
contains many objects and if the voxel is traversed
many times: i.e. a lazy evaluation approach.

Preprocessing work is done in the identical
manner as the USV approach. During the stage of
ray tracing, a ray traverses the uniform voxels as
before. Upon reaching a voxel containing candidate
objects, if the list of objects residing in the voxel is
small, then the objects are tested for intersection
with the ray and continues on in the usual USV
manner. However, if the number of objects in the
voxel is large, it is subdivided into eight subvoxel
quadrants (an initial octree), and the objects are
spatially divided into the eight subvoxels.

Then to find a more refined (and hopefully
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smaller) candidate set, the octree is traversed in
the same manner described by Glassner [Glas84].
This can be done easily with the availability of the
t distance at the boundaries of the voxel: the USV
implementation using [Aman87]'s approach will
guarantee this. If no intersection is found within the
subvoxels, then the process proceeds in the usual
USV manner onto the next uniform voxel.

With the initial octree within each voxel,
the candidate set of objects to intersect with may
still be very large. To remedy this, every time the
subvoxel visited contains many objects, that sub-
voxel is further divided into eight quadrants. Thus
the octree is subdivided as needed.
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Pros and Cons of
the Hybrid Approach

Using this hybrid approach, an initial candi-
date set of objects to intersect with can be quickly
determined from the fast traversal through uniform
voxels. If the candidate set contains too many ob-
jects, then it can be reduced by walking through the
subvoxels. Thus scenes containing sparse environ-
ments with dense regions should encounter less the
trouble. In addition, quasi-uniformly distributed

scenes should have about the same runtime perfor-

mance as USV.

By constructing the octree subdivisions as
needed, minimal hierarchy (as opposed to the pre-
imposed hierarchy) suitable for rendering is gener-
ated. Dynamic space partitioning is also acquired
via lazy evaluation of the octrees. Thus the USV
subdivision level problem is not as important, an
educated guess for the uniform subdivision level is
sufficient. The guess should favou less severe sub-
division levels; any insufficiency should be im-
proved by the subvoxels. Thus the need to skip
empty voxels is much less critical too.

I also recall that there have been criticisms
about the octree not being able to snuggly fit the
objects in order to optimize the traversal and inter-
section processes. However, in our case, th octree
is a second level culler and should more than suf-
fice for our purposes.

The main disadvantage of this approach is
that more storage is necessary as compared to both
USV and VSV. However, the space usage is creat-
ed only when needed and will not be wasted as in
the VSV preprocessing step.

Another Second Level Culler,
If You Are Lazy

If the octree second level culler is too much
for you in terms of coding, another second level
culler can be used. This is exactly described in

[Snyd87]: the ray bounding box culler. Basically,
the ray span that crosses the voxel can form a
bounding box. Intersections are only checked
against objects whose bounding box cross the ray
bounding box. Each bounding box check requires
only 6 flops.

Note, however, some of the ray bounding
box checks are wasteful. For USV, the maximum
ray span T through any voxel can be calculated:

T = VAX" + Ay” + Az"

where Ai are the dimensions of each voxel. A ray
span ¢ crossing a voxe only does the ray bounding
bo culling if t<BT, for some suitable B<1.

This second level culler does surprisingly
well for sparse environments under USV. But it
only does linear culling and should not be nearly as
effective as the above hybrid approach. This is just
suggested for the lazy coder.

Final Comments

I have not implemented this approach. It
sounds good in theory, but then I don't believe in
theory. I would like to hear from fellow Ray Trac-
ing News colleagues as what they think about this
approach: improvements, criticisms, etc. @
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Simple Numerical Root-Finding

Andrew S. Glassner

Xerox PARC, 3333 Coyote Hill Rd, Palo Alto, CA 94304
glassner.pa@xerox.com

(A sample Graphics Gem in the Algorithms category. See
the call for contributions to Graphics Gems on page 26.)

here are lots of techniques for numeri-

cal root-finding, some simple and

some very complicated [Press88].
Many graphics techniques that need to find the
roots of equations have very modest needs: the
equations they need to solve are of one parameter,
easily evaluated, and relatively well-behaved, both
in their analytic behaviour and numerical stability.
Of course, not all algorithms enjoy these character-
istics, but there are many that do. For example,
consider ray-tracing of low-order polynomical sur-
faces, finding solutions to cubic curves for spline
drawing and selection, and generalized clipping
against arbitrary clipping surfaces.

‘We present here a stable, robust little tech-
nique based on [Blinn82] for general root-finding
in relatively simple situations, such as those above.

Perhaps the simplest numerical root-finding
techniques are Newton-Raphson and Regula Falsi
[Pizer83]. Newton-Raphson iterates a single guess
of the root; it converges very quickly when it's ze-
roing in, but it can completely miss a root, and
even worse, get stuck in an infinite loop, oscillating
around the root. On the other hand, Regula Falsi re-
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fines an interval that encloses the root; it's not as
fast as Newton-Raphson, but if you start with an in-
terval that includes a root, it's guaranteed to find
that root.

A nice combination was suggested by Blinn
[Blinn82]. He starts with an interval containing the
root, and performs a Newton-Raphson iteration on
one end. If the result of that iteration is a new val-
ue that is outside of the interval, then he ignores
that result and calculates a step of Regula Falsi in-
stead. The result in either case is a new value with-
in the interval, which is used as the new left or
right side. The process repeats until the root is
trapped to within some precision. The technique is
also discussed in [Duff84].

This technique has the drawback that you
can waste time computing Newton-Raphson itera-
tions that you then throw away. The hopeis that at
some point Newton-Raphson will be close enough
that it begins converging; then you save big be-
cause of its faster convergance. This whole tech-
nique hinges on the ability to quickly evaluate the
value of a function (and its derivative, for Newton-
Raphson). If function evaluation is expensive in



The Ray Tracing News

some application, then this may not be a good ap-
proach.

Note also that it is very important that your
original left and right values actually trap a root.
If they trap several roots the technique will usually
find the root with the smallest value, though not al-
ways. If you don't trap a root, or your right value
is smaller than your left value, the algorithm won't
work right. There are no checks for either of these
conditions. e
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Here is an implmentation of the root-finding algorithm in Mesa (you can think of this as a high-level pseudo-
code, if you like). Notice that the functions Fofx and DofFofx, which evaluate the function and its derivative, are
declared as functions of type FuncProc. Thus they both accept an argument x, and return a real result y; x and y

need not be re-declared for each function definition.

In the example functions below, we're simply evaluating x2-3, which obviously has roots at +v3.

newX: REAL « left;
WHILE ABS[f[newx]] > tolerance DO

ENDLOOP;
RETURN [newx];

¥

d: REAL « fp[x];

)

d: REAL « frx]-f[Ix];

Y

Fofx: FuncProc ~ { y « (x*x)-3.0; }; --F(x)
DofFofx: FuncProc ~ { y «—2.0*x; }; --dF(x)ldx

newx « NewtonRaphson([f, fp, newx];
IF newx < left OR newx > right THEN newx « RegulaFalsi[f, left, right];
IF flnewx]*fleft] <= 0 THEN right « newx ELSE left « newx;

- - FindRoot: roots of univariate functions. Input: f(x), df(x)/dx, and an interval.
FuncProc: TYPE ~ PROC [x: REAL] RETURNS [y: REAL]; - - Function type declaration

- - example use: root « FindRoot[leftx, rightx, tolerance, Fofx, DofFofx];
FindRoot: PROC [left, right, tolerance: REAL, £, fp: FuncProc] RETURNS [root: REAL] ~ {

NewtonRaphson: PROC [f, fp: FuncProc, x: REAL] RETURNS [REAL] ~ {

IF d # 0.0 THEN RETURN [x - (f[x] / d)] ELSE RETURN [x-1.0];

RegulaFalsi: PROC [f: FuncProc, 1x, rx: REAL] RETURNS [REAL] ~ {

IF d # 0.0 THEN RETURN [rx - f[rx] * (rx-Ix) / d] ELSE RETURN [(Ix+rx) / 2.0];
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Here is an implementation of the algorithm in C. The skeleton has been slightly enhanced to directly support
polynomials. A global polynomial is used so that NewtonRaphson() and RegulaFalsi() don't need to change to sup-
port different kinds of functions; the functions themselves will go the globals for their specific data

It is usually hard to make code simultaneously clear, fast, and concise. I have opted here for clarity. The
following code actually runs; I simply copied the working code into the page layout program and formatted it.

One straightforward optimization would be to combine the routines polyroots, NewtonRaphson, and Regula-
Falsi into one routine. That routine could also cache the current value of the function at the left end, so it need not
be re-evaluated each time, one would need to update that value when the new guess moves the interval's left side.

/* simple root-finding, based on Blinn82. Andrew Glassner, 8 May 1989 */
#include <stdio.h>
char *malloc();

double poly (), dpoly():

typedef struct Polynomial_ struct {
int length; . /* the number of coefficients */
double *coefficients; /* most significant first, constant last */
} Polynomial;

Polynomial *CurrentPolynomial = NULL;
double dabs(x) double x; { if (x<0.0) return (-x); return (x); }

double NewtonRaphson (f, df, x) /* generic Newton-Raphson step */
double (*f) (), (*df) (), x;
{
double d = (*df) (x);
if (d != 0.0) return (x-((*f) (x)/d)); return (x-1.0);
}

double RegulaFalsi(f, left, right) /* generic Regula-Falsi step */
double (*f) (), left, right;
{
double d = (*f) (right) - (*f) (left);
if (d != 0.0) return (right - (*f) (right) * (right-left) /d):
return ((left+right)/2.0);
}

double poly(x) /* evaluate global polynomial at x */
double x;
{
double result = 0.0;
double *c = CurrentPolynomial->coefficients;
int i;
for (i=0; i<CurrentPolynomial->length; i++) {
result *= x;
result += *c++;
}

return (result);
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double dpoly(x) /* evaluate derivative of global polynomial at x */
double x;
{
double result = 0.0;
double *c = CurrentPolynomial->coefficients;
int i;
for (i=1; i<CurrentPolynomial->length; i++) {
result *= x;
result += (CurrentPolynomial->length - i) * (*c++);
}
return (result);
}

double polyroots(left, right, tolerance, £, df, p)
double left, right, tolerance;
double (*f) (), (*df) ();
Polynomial *p;
{
double newx = left;
CurrentPolynomial = p; /* save current polynomial into global */
while (dabs((*f) (newx)) > tolerance) {
newx = NewtonRaphson (£, df, newx):;
if (newx<left || newx >right) newx = RegulaFalsi(f, left, right);
if ((*f) (newx) * (*f) (left)<=0.0) right = newx; else left = newx;
}
return (newx);

}

main() { /* an example main function to show how this all works */
Polynomial *p;
double left, right, tolerance;
double root;
p= (Polynomial *)malloc ((unsigned) sizeof (Polynomial)) ;
p->length = 5;
p->coefficients = (double *)malloc ((unsigned)
(p—->length * sizeof (double)));
/* coefficients are listed most significant first */
/* This poly is x*4 - 21.14 x*3 - 216.48 x"2 + 3307.22 x - 7693.0
It has roots at 25, 7, 3.14, and -14
*/
*x (p=>coefficients) =1.0;
* (p->coefficients+l) = -21.14;

* (p->coefficients+2) = -216.48;

* (p->coefficients+3) = 3307.22;

* (p->coefficients+4) = -7693.0;

left = -11.0; /* left and right interval to trap root at 3.14 */
right = 6.0;

tolerance = .01; /* iterate until f(root-estimate) < tolerance */

root = polyroots (left, right, tolerance, poly, dpoly, p);
printf ("root = $£f\n", root);
}

/* end of listing */

22 Volume 3, Number 1



The Ray Tracing News :

Ray Tracing News

pookste,

Andrew S. Glassner

Xerox PARC, 3333 Coyote Hill Rd, Palo Alto, CA 94304
glassner.pa@xerox.com

n The Ray Tracing News 2(1) (February

1988), Eric Haines contributed an article

called "Top 10 Hit Parade of Computer
Graphics Books". This article was so popular that
I've been prompted to start this new book-review
column, bookshelf.

I would like to solicit contributions from
anyone who has run across an interesting book that
they have found useful in their work, and that
might prove useful to others. Feel free to submit
just a couple of paragraphs about a single book that
you like, or send me a bunch of reviews if you feel
prolific. I'll attach the name of the reviewer to the
review. The review need not be a critical analysis
of the book in the traditional sense. If you would
simply like to let other folks know of something
new and interesting, that's a worthy contribution
and I'd be happy to print it.

To start things off, I'd like to describe a few
books that I like when thinking about textures and
3-d modeling. These are neat books for inspiring
ideas on design and shape, in both 2-d and 3-d.
This is by no means an exhaustive list, but rather a
few winners from my collection.
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A Topological Picturebook
by George K. Francis
Springer-Verlag 1987

This is a very attractive book, filled with
gorgeous illustrations. Most of the pictures are
hand-drawn with pen and ink, though a few are
computer generated, and some others are photos of
colored chalk on blackboard. This book is not a
text on topology in the traditional sense; the author
is not interested in teaching the reader about topol-
ogy. Rather, he assumes that you already know a
good deal of topology, and your interest is in how
to draw pictures that show particular topological
spaces and situations.

So this volume is really more of an art book
than a math book. If you understand topology, you
can read the text and better understand the pictures.

If you don't know topology, you won't learn it
here. This latter class of reader can simply flip
through the pages and admire the stunningly unusu-
al shapes and deformations in the illustrations, us-
ing them as inspirational material as with any other
art or nature book.
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Tilings and Patterns
by Branko Grinbaum and G.C. Shepard
W.H. Freeman and Company, 1987

This mammoth book is already a classic in
the field. As a mathematics book it establishes a
cohesive and comprehensive tiling theory that pro-
vokes as many new ideas as it solves. As a source
book for design it is filled with fascinating collec-
tions of patterns. Anything you ever wanted to
know about periodic and non-periodic tiling is
here, presented in a lucid and accessible manner.

Those who think that patterns are just a
means for creating pretty shapes should be aware
that there is a connection between tiling and Turing
machines, which means that many investigations of
tiling can be interpreted as an analysis of compua-
tion, and vice-versa. Tiling is still a very active
field. The three-dimensional crystallography sym-
metry groups have been well understood for years,
but the new field of quasi-crystals (based on an
icosahedral symmetry) is gaining a lot of interest
with the recent discovery of classes of real crystals
that exhibit this form of non-periodic tiling. The
bases for both of these topics, as well as many oth-
ers, are discussed in this book. I like to periodical-
ly dip into this book and read a bit or look at some
of the pictures.

The Geometrical Foundation
of Natural Structure
(A Source Book of Design)
by Robert Williams
Dover Press 1979

This heavily illustrated book describes the
author's thinking on two- and three-dimensional ge-
ometries. For me, the strengths of the book are in
its treatment of two- and three-dimensional tiling
and transformations. The manuscript contains lots
of polyhedral nets and recipes for close-packing of
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spheres and polyhedra, as well as some interesting
variations on polyhedra. There is also some discus-
sion of transforming some kinds of polyhedra into
others. I like this book both as a reference and as a
source for inspiration for regular 3-D structures.

Handbook of Regular Patterns
(An Introduction to Symmetry
in Two Dimensions)
by Peter S. Steven
MIT Press 1981

This book discusses the point groups, the
seven line groups, and the seventeen 2-D symmetry
groups that underly many tilings seen in art and na-
ture. Each chapter begins with a short sﬁmmary of
the properties of one group, and then presents
many, many pictorial examples of designs based on
that group.

The book is printed in black-and-white,
though some gray tones are used to indicate addi-
tional colors. The examples are taken from the
world's artworks, and many are accompanied by
descriptive text. For learning about symmetry
groups I'd prefer to read a book on group theory or
crystallography, but for examples of designs based
on symmetry this is an excellent reference.

The Grammar of Ornament
by Owen Jones
Dover Press 1987

This is one of the undisputed classics in the
field of ornamental design. Owen Jones (1809-
1874) collected bits of artwork from all over the
world, illustrating principles of design executed by
master craftsmen. The text discusses the sources
and techniques of the different categories of orna-
ment, organized along historical, geographical, and
sociological themes.

Jones advocates 37 Propositions in "the ar-
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rangement of form and colour, in architecture and
the decorative arts", which the illustrations in the
book are meant to illustrate and amplify. Literally
thousands of examples of graphic art, many in full
color, create an abundant sourcebook for design
and ornament. Dover publishes two versions of
this once-rare book: a beautifully produced, deluxe
hardcover reproduction of the original manuscript
(13-1/2 by 9 inches), and a paperback edition con-
taning all 100 color plates (about 12 by 9 inches).

Snow Crystals
by W.A. Bentley and W.J. Humphrey
Dover Press 1962

When talking about fun source books for
design I just couldn't bear to leave this one out.
There's a few pages of introductory text about
snow crystals, but the bulk of the book is some
2400 large, black-and-white pictures of snow crys-
tals. Indeed, no two are alike! I like just flipping
through the pages of this book every now and then,
to remind myself of the diversity that can be found
even in such simplicity.

The Power of Limits
by Gyérgy Doczi
Shambhala Publications 1981

The author of this book is a big fan of har-
mony, in music, architecture, art, and nature. He
found that many of the design elements of aestheti-
cally pleasing structures could be related to each
other through geometric ratios. The book is exten-
sively illustrated with structures ranging from hu-
man bodies to temples, nautilus shells to dinosaur
skeletons, Stonehenge to Chinese pagodas. Many
of these illustrations are accompanied by harmonic
diagrams that show the relationships of the various
pieces of the structure. This is a fun book to come
back to every now and then, to remember how
prevalent these natural relationships are. e
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