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Rectangular Bounding
Volumes for
Popular Primitives

by Ben Trumbore
(wbt@beauty.in.cornell.edu)

Many efficient ray tracing algorithms require each
primitive object in an environment to be bounded by a
rectangular volume. While experienced ray tracers have
certainly written code to derive tight fitting volumes, many
implementors must resort to less efficient bounding
techniques. As a reference for those ray tracers who are
uncomfortable with differential geometry, this article
derives minimal orthoganal rectangular bounding volumes
for some popular types of primitives. These derivations
could easily be adapted for square bounding volumes or
slabs.

The methods described here assume that each object
in an environment is derived by transforming some
primitive object by a cumulative transformation matrix
(CTM). We transform the component parts of these
primitives usin g the CTM and determine the extrema of
the transformed components. There are three types of
components that concem us: points, circles, and surfaces.

Points are the easiest component to work with.
Cubes, prisms, and polygonal objects can be bounded by a
convex hull that uses some or all of their vertices. It is
simple to take all of the vertices of such a primitive and
transform them by a CTM. These transformed points can
be checked for extrema in X, Y, and Z to find a rectangu-
lar bounding volume.

Cylinders and cones contain circle components. By
transforming the circles at both ends of a cylinder and
finding the extrema of those circles, we can determine a
tight bounding volume. For a cylinder defined as the
extrusion of a circle of radius 1.0 along the Y axis from -

1.0to 1.0, our circles J, and J, have components:
Jtop(t) =[cost 1,sint, 1], 0<t<2rx

Jpol® =[cos t, -1, sin ¢, 1]

Define our CTM to be:
ABCO
DEFO
M= GHIO
TxTyTzl

Our transformed circles K, and K, are defined:

- qt
Acost+D+Gsint+ T,

Bcost+E+H sint+Ty
Ccost+F+Isint+T,
1

K top(®) = Jiop() M=

- qt
Acost-D+Gsint+ T,
Bcost-E+Hsint+T,
Ccost-F+Isint+T,
1

b -

Kpod?) =T podd M=

Taking the derivative of these equations yields:

. t
Gcost-Asint
Hcostz-Bsint
Icost-Csint

0

thop - deot _
dt dr

This equation can be used to find the values of ¢t where
the circle has extremes in X, Y, or Z:

Xextrema: ¢ =atan2(G, A)
Y extrema: ¢t=atan2(H, B)
Zextrema: ¢ =atan2(], C)

By substituting these values for ¢ back into the
equations for K_ and K, we can find the transformed
points that determine our bounding volume. Obviously, a
cone’s bounding volume involves analyzing the circular
component formed by its base and the point component
formed by its apex.

A sphere is a simple example of a surface component.
When a sphere is transformed by a general CTM, it may
become an ellipsoid aligned along any axis. A unit sphere
of radius 1.0 centered at the origin is defined:

J(u,v) = [cos u cos v, sin v, sin u cos v, 1]

OSuszn,—g-Svs;

Transforming this sphere by the matrix M we get K:

K@u,v) =Ju,yyM=
t
Acosucosv+Dsinv + G sinucos v

Bcosucosv+Esinv + Hsinucos v
Ccosucosv+Fsinv +1sinucosv
1

We are interested in finding the u and v parameter
values for the extrema on this surface. First the partial
derivatives of K are found:
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cos v (G cos u - A sin u)

cos v (H cos u - B sin u)

cos v (Icos u - C sin u)
0

K _
X -

Dcosv -sinv (Acos u+ G sin u)

Ecos v - sin v (B cos u + H sin u)

Fcos v -sinv (Ccos u +1sin u)
0

K _
x-

The extrema are found by simultaneously finding the
roots of one dimension of the partial derivatives. To find
the X extrema, for example, solve:

O=(%%)x= cos v (G cos u - Asin u)

_[dK) _ . .
0= W'y_ Dcos v -sinv (Acos u + G sin u)

u = atan2(G, A)
v=atan2(D, A cos u + G sin u)

Having found this one X extreme, add or subtract & to
u and negate v to find the other X extreme. This is
repeated for the Y and Z dimensions. Each of these u,v
locations is then substituted into Y («,v) to find the point
used to generate the bounding volume,

Finally, define a torus as a vertical circle of radius R
that is revolved around the Y axis. The circle’s center
sweeps out a circle of radius Q in the XZ plane, and
R + Q= 1. The equation of such a surface is:

t
(R+Qcos v) cos u
Qsinv
(R +Qcos v) sin u
1

Ju,v)=

It happens that the u,v coordinates of tori extrema are
found using exactly the same equations as used for a
sphere. These coordinates are then substituted into
K(u,v)=J(u,v) M. Altematively, the u,v coordinates can be
found using a circular component of the torus. To do this,
transform the horizontal circle J of the torus by M to give
K:

J(@) =[R cos u, 0,R sin u, 1]
Kw=JwyM

At each of the dimensional extrema of the circle K, Q
can be added or subtracted to find points that will deter-
mine the rectangular bounding volume. *
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Linear-time Voxel Walking
for Octrees

by Jim Arvo

(rutgersiumix!apollolarvo)

Here is a new way to attack the problem of “voxel
walking” in octrees (at least I think it’s new). By voxel
walking I mean identifying the successive voxels along the
path of a ray. This is more for theoretical interest than
anything else, though the algorithm described below may
actually be practical in some situations. I make no claims
about the practicality, however, and stick to theoretical
time complexity for the most part.

For this discussion assume that we have recursively
subdivided a cubical volume of space into a collection of
equal-sized voxels using a BSP tree — i.e. each level
imposes a single axis-orthogonal partitioning plane. The
algorithm is much easier to describe using BSP trees, and
from the point of view of computational complexity, there
is basically no difference between BSP trees and octrees.
Also, assuming that the subdivision has been carried out to
uniform depth throughout simplifies the discussion, but is
by no means a prerequisite. This would defeat the whole
purpose because we all know how to efficiently walk the
voxels along a ray in the context of uniform subdivision —
i.e. usea3DDDA.

Assuming that the leaf nodes form an NxNxN array
of voxels, any given ray will pierce at most O(N) voxels.
The actual bound is something like 3N, but the point is
that it’s linear in N. Now, suppose that we use a “re-
traversal” technique to move from one voxel to the next
along the ray. That is, we create a point that is guaranteed
to lie within the next voxel and then traverse the hierarchy
from the root node until we find the leaf node, or voxel,
containing this point. This requires O(log N) operations.
In real life this is quite insignificant, but here we are
talking about the actual time complexity. Therefore, in the
worst case situation of following a ray through O(N)
voxels, the “re-traversal” scheme requires ON log N)
operations just to do the “voxel walking. “ Assuming that
there is an upper bound on the number of objects in any
voxel (i.e. independent of N), this is also the worst case
time complexity for intersecting a ray with the environ-
ment.

In this note I propose a new “voxel walking” algo-
rithm for octrees (call it the “partitioning” algorithm for
now) which has a worst case time complexity of O(N)
under the conditions outlined above. In the best case of
finding a hit “right away” (after O(1) voxels), both “re-
traversal” and “partitioning™ have a time complexity of
O(log N). These results are summarized in Table 1.

The new algorithm proceeds by recursively partition-
ing the ray into little line segments which intersect the leaf
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voxels. The top-down nature of the recursive search
ensures that partition nodes are only considered once per
ray. In addition, the voxels will be visited in the correct
order, thereby retaining the O(log N) best case behavior.

Best case: O(1) Worst case: O(N)
voxels searched voxels searched
before a hit before a hit
Re-traversal O(log N) O(N log N)
Partitioning O(log N) O(N)
Table 1

Algorithm 1 gives a pseudo code description of the
“partitioning” algorithm. It is the routine for intersecting a
ray with an environment which has been subdivided using
a BSP tree. Little things like checking to make sure the
intersection is within the appropriate interval have been
omitted. The input arguments to this routine are:

Node : A BSP tree node which comes in two flavors
— a partition node or a leaf node. A partition node defines
a plane and points to two child nodes which further
partition the “positive” and “negative” half-spaces. A leaf
node points to a list of candidate objects.

P : The ray origin. Actually, think of this as an
endpoint of a 3D line segment, since we are constraining

the “ray” to be of finite length.

D : A unit vector indicating the ray direction.

len : The length of the “ray” — or, more appropri-
ately, the line segment. This is measured from the origin,
P, along the direction vector, D.

The function Intersect is initially passed the root
node of the BSP tree, the origin and direction of the ray,
and a length, len, indicating the maximum distance to
intersections which are to be considered. This starts out
being the distance to the far end of the original bounding
cube.
As the BSP tree is traversed, the line segments are
chopped up by the partitioning nodes. The “shrinking” of
the line segments is critical to ensure that only relevent
branches of the tree will be traversed.

The actual encodings of the intersection data, the
partitioning planes, and the nodes of the tree are all
irrelevant to this discussion. These are “constant time”
details. Granted, they become exceedingly important
when considering whether the algorithm is really practial.
Let’s save this for later.

A naive (and incorrect) proof of the claim that the
time complexity of this algorithm is O(N) would go
something like this:

The voxel walking that we perform on behalf of a
single ray is really just a search of a binary tree with
voxels at the leaves. Since each node is only processed
once, and since a binary tree with k leaves has k-1 internal
nodes, the total number of nodes which are processed in

Algorithm 1

FUNCTION Intersect( Node, P, D,

len )

RETURNING results of intersection
IF Node is NIL THEN RETURN( no intersection )

IF Node is a leaf THEN BEGIN

intersect ray (P,D) with objects in the candidate list
RETURN( the closest resulting intersection )

END IF

dist := signed distance along ray (P,D) to plane defined by Node
near := child of Node in half-space which contains P

IF 0 < dist < len THEN BEGIN
hit_data :=

Intersect ( near, P,

/ the interval intersects the plane

D, dist )

IF hit_data <> "no intersection" THEN RETURN( hit_data )

Q :=P + dist * D
far :=
RETURN( Intersect( far, Q, D,
END IF

ELSE RETURN( Intersect( near,

END

/ 3D coords of point of intersection
child of Node in half-space which does NOT contain P
len - dist ) )

D, len ) )
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the entire operation must be of the same order as the
number of leaves. We know that there are O(N) leaves.
Therefore, the time complexity is O(N).

But wait! The tree that we search is not truly binary
since many of the internal nodes have one NIL branch.
This happens when we discover that the entire current line
segment is on one side of a partitioning plane and we
prune off the branch on the other side. This is essential
because there are really N° leaves and we need to discard
branches leading to all but O(N) of them. Thus, k leaves
does not imply that there are only k-1 internal nodes. The
quention is, “Can there be more than O(k) internal nodes?”

Suppose we were to pick N random voxels from the
N2 possible choices, then walk up the BSP tree marking all
the nodes in the tree which eventually lead to these N
leaves. Let’s call this the subtree “generated” by the
original N voxels. Clearly this is a tree and it’s uniquely
determined by the leaves. A very simple argument shows
that the generated subtree can have as many as
2(N-D)log N nodes. This puts us right back where we
started from, with a time complexity of O(N log N ), even
if we visit these nodes only once. This makes sense,
because the “re-traversal” method, which is also
O(N log N), treats the nodes as though they were unre-
lated. That is, it does not take advantage of the fact that

paths leading to neighboring voxels are likely to be almost
identical, diverging only very near the leaves. Therefore,
if the “partitioning” scheme really does visit only O(N)
nodes, it does so because the voxels along a ray are far
from random. It must implicitly take advantage of the fact
that the voxels are much more likely to be brothers than
distant cousins.

This is in fact the case. To prove it I found that all I
needed to assume about the voxels was connectedness —
provided I made some assumptions about the “niceness” of
the BSP tree. To give a careful proof of this is very
tedious, so I'll just outline the strategy (which I think is
correct). But first let’s define a couple of convenient
terms:

1) Two voxels are “connected” (actually “26-
connected”) if they meet at a face, an edge, or a comer.
We will say that a collection of voxels is connected if there
is a path of connected voxels between any two of them.

2) A “regular” BSP tree is one in which each axis-or-
thogonal partition divides the parent volume in half, and
the partitions cycle: X, Y, Z, X, Y, Z, etc. (Actually, we
can weaken both of these requirements considerably and
still make the proof work. If we’re dealing with “stan-
dard” octrees, the regularity is automatic. )

Here is a sequence of little theorems which leads to

Algorithm 2

FUNCTION BSP_Intersect( Ray, Node, min, max )

RETURNING intersection results

BEGIN

IF Node is NIL THEN RETURN( no intersection )

IF Node is a leaf THEN BEGIN

/ Do the real intersection checking

intersect Ray with each object in the candidate list discarding
those farther away than max.
RETURN( the closest resulting intersection )

END IF

dist := signed distance along Ray to plane defined by Node
near := child of Node for half-space containing the origin of Ray

far

:= the "other" child of Node - i.e. not equal to near.

IF dist > max OR dist < 0 THEN / Whole interval is on near side
RETURN( BSP_Intersect( Ray, near, min, max ) )

ELSE IF dist < min THEN

/ Whole interval is on far side

RETURN( BSP_Intersect( Ray, far , min, max ) )

ELSE BEGIN
hit_data

/ the interval intersects the plane
:= BSP_Intersect( Ray, near, min, dist ) / Test near side

IF hit_data indicates that there was a hit THEN RETURN( hit_data )

RETURN( BSP_Intersect( Ray, far, dist, max ) )

END IF
END

June 1988

/ Test far side




The Ray Tracing News

the main result:

THEOREM 1: A ray pierces O(N) voxels.

THEOREM 2: The voxels pierced by a ray form a
connected set.

THEOREM 3: Given a collection of voxels defined
by a “regular” BSP tree, any connected subset of K voxels
generates a unique subtree with O(K) nodes.

THEOREM 4: The “partitioning” algorithm visits
exactly the nodes of the subtree generated by the voxels
pierced by a ray. Furthermore, each of these nodes is
visited exaclty once per ray.

THEOREM 5: The “partitioning” algorithm has a
waorst case complexity of O(N) for walking the voxels
pierced by a ray.

Theorems 1 and 2 are trivial. With the exception of
the “uniqueness” part, theorem 3 is a little tricky to prove.
I found that if I completely removed either of the “regular-
ity” properties of the BSP tree (as opposed to just weaken-
ing them), I could construct a counterexample. I think that
theorem 3 is true as stated, but I don’t like my “proof” yet.
I’'m looking for an easy and intuitive proof. Theorem 4 is
not hard to prove at all. All the facts become fairly clear if
you see what the algorithm is doing. Finally, theorem 5,
the main result, follows immediately from theorems 1
through 4.

Some Practical Matters

Since log N is typically going to be very small —
beunded by 10, say — this whole discussion may be
purely academic. However, just for the heck of it, I'll
mention some things which could make this a (maybe)
competative algorithm for real-life situations (in as much
asray tracing can ever be considered to be “real life”).

First of all, it would probably be advisable to avoid
recursive procedure calls in the “inner loop” of a voxel
walker. This means maintaining an explicit stack. At the
very least one should “longjump” out of the recursion once
an intersection is found.

The calculation of dist is very simple for axis-or-
thogonal planes, consisting of a subtract and a multiply
(assuming that the reciprocals of the direction components
are computed once up front, before the recursion begins).

A nice thing which falls out for free is that arbitrary
partitioning planes can be used if desired. The only
penalty is a more costly distance calculation. The rest of
thie algorithm works without modification. There may be
some situations in which this extra cost is justified.

Algorithm 2 presents a slightly improved version of
the algorithm. It turns out that you never need to explicitly
compute the points of intersection with the partitioning
planes. This makes it a little more attractive. o

Exposure Keys for the
Digital Darkroom

by Andrew Glassner
(glassner@unc.cs.edu)

Ray tracers illuminate virtual objects with virtual lights,
and then image those objects through a virtual lens in a virtual
camera. And then we typically record onto a model of real
film! By “a model of real film” I mean an image storage
medium with predefined minimum sensitivity and saturation
points.

This often isn’tdisasterous. If we make animage andiit’s
too dark, we can just turn up the monitor brightness and
contrast. But sometimes we build an image and all the pixels
have RGBs in the teens at highest. Stretching the histogram
can give us more range, but the basic quantization of colors
is already done and irreversible; the best solution is to re-
render with more or brighter virtual illumination in the scene.

For a single image improper illumination might be no
more than inconvenient. But consider an animated scene,
where we set up the rendering system and go home for the
weekend. What level of illumination do we choose? And
how do we choose our virtual camera’s aperture? And what
should be the “speed” of our virtual film? These are hard
questions, and typically not questions that I want to think
about answering.

Makers of real films must address these questions.
Imagine a scene where a character is exploring a dark cave
with a flashlight. When the flashlight is off, we want to see
enough of what’s going on that we can see the character
moving around, avoiding various rock formations; this ar-
gues for film of high sensitivity or speed (i.€. very responsive
to light) and a wide aperture. But then the flashlight comes
on, and starts sweeping over the floor, which is littered with
shiny, reflective gold coins. Unless we adjust the aperture or
the film speed, we’re going to wind up with overexposed
film. To find the right combination of aperture and speed in
each situation requires careful planning and measurement
(typically one cannot change the film speed in the middle of
a scene, so only the aperture can be adjusted). If the
exposures are wrong, the scene must be re-shot.

The analogy to our computer-generated scenes is direct
if we clip our final colors (usually computed in “raw” RGB)
to the lower and upper limits of 0 and 1 before storing them
on disk. In effect, this says that our final recording medium
will not image any light with an absolute intensity less than
0 units or greater than 1 unit. Why should we place this
arbitrary restriction on our recording media? If we overex-
pose an entire animated scene, we may getback intensities for
every pixel for every frame between 5 and 9 units. If we clip
to 1 before storing, then the whole scene comes out white. If
we save the raw RGB in its complete dynamic range, then we
can adjust the final intensities after the rays have been cast.
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What I’'m arguing for is one component in a digital
darkroom, where we can take the intensity values recorded
onto very wide-range negatives and map them into appropri-
ate values for a display device.

We might describe the mapping for just a single frame;
this is helpful for creating images when you’re not sure just
how much light to use before rendering. For animations, the
mapping may change from frame to frame. So for the
flashlight in the cave scene, we could map low intensities to
the full range of the display before the flashlight comes on,
and then change the mapping when the flashlight comes on:

In dark cave With flashlight on
255 255
> 2 > 2
K 7] 7]
3 23
0c Oc
0 1 1 3 5 0 1 13 5
Recorded Recorded
Intensity Intensity

Sothe scheme is simple: a linearly-interpolated mapping
from recorded intensity to display intensity. Iuse luminance
as a measure of intensity, and scale the RGB vector to match
the desired luminance. For an animated sequence, I linearly
interpolate these maps, which is why I call each one an
exposure key. The essential difference between thisideaand
regular histogram manipulation is that the input data is
deliberately kept with the value with which it is computed; as
opposed to the typical practice of clamping RGB to 0 and 1.

There’s noreason to arbitrarily avoid negative values. A
common idea (though unpublished, to my knowledge) is to
model digital darklights into a scene. These are the opposite
of spotlights; they are light sources that simply emit negative
light! Although there is no physical justification for such a
device, it’s an intriguing new tool thatcomputer graphics puts
atour disposal. IfI focus a powerful darklight onto an object
lit only by a weak (regular) light source, then the light striking
film that images that object will have negative intensity. If we
clamp to a minimum of 0, then we can’t get blacker than
black; i.e. the region in the darklight is no darker than the
surrounding world. If we allow the light intensity to drop
below 0 we can let these different areas appear different if we
want.

One of the best advantages of exposure keys is that they
can be applied interactively after the exposure. Sometimes
it’s useful to show the intensity histogram in the key:

June 1988

255

Recorded
Intensity

Display
o Intensity

Popularity

I propose it would be helpful to have a sequence of key
frames on the color monitor, and the corresponding sequence
of exposure keys on the animator’s workstation. One could
adjust the exposure keys until the animation looks good, and
then interpolate keys for inbetween frames. Note that the
frames chosen for exposure control need not have any rela-
tion to which rendered frames are selected from the anima-
tion.

Exposure keys can be easily extended to other optical
processing, such as colored filters and special effects. »

Any ray from source Q can be reflected

by any of the hyperboloidal mirrors and

in such a direction that all rays appear
to come from Q'

from Principles of Optics,
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A Postscript Ray Tracer

by John H. Hartman and Paul Heckbert
(hartman@emie.berkeley.edu, ph@miro.berkeley.edu)

Ever worry about all those cycles that are going to waste every night when you shut off your
laserwriter? Well, nowyou can put themto good use. Introducing the world's first PostScript raytracer.
Just start it up, wait a (long) while, and out comes an image that any true graphics type would die
laughing over. As it is currently set up it will trace a scene with three spheres and two lights. The image
resolution is 16x16 pixels. Warning: the code is a real kludge. I'm not sure there is much you can
change without breaking it, but you’re welcome to try. If, by chance, you are able to improve the running
time please send us the improved version.

This is a PostScript ray tracer. It is not a toy - don't let the kids play with it. Features include:
shadows, recursive specular reflection and refraction, and colored surfaces and lights (bet you can't
tell!). Touse this thingjust send it toyour favorite Postscript printer. Then take a long nap/walk/coffee
break/vacation. Running time for a recursive depth of 3 and a size of 16x16 is about 1000 seconds
(roughly 20 minutes) or 4 seconds/pixel. There are a few parameters at the beginning of the file that
you canchange. The rest of the code is pretty indecipherable. It is translated from a C program written
by Paul Heckbert, Darwyn Peachey, and Joe Cychosz for the Minimal Ray Tracing Programming
Contest in comp.graphics in May 1987. Some changes have been made to improve the running time.
Don't even bother trying to figure out how this works if you are looking for a good example of a ray tracer.

Have fun.

(Editor’s note: If you don't want to type this in, you can retrieve it from the usenet newsgroup
comp.graphics. If you can't do that, send email to John or Paul for a copy.)

%!
% Copyright (c) 1988 John H. Hartman and Paul Heckbert

o

% PostScript ray tracer

% This source may be copied, distributed, altered or used, but not sold for

% profit or incorporated into a product except under licence from the authors.
% This notice should remain in the source unaltered.

% John H. Hartman jhartman@ernie.Berkeley.EDU

% Paul Heckbert ph@miro.Berkeley.EDU

%

/starttime usertime def

/DEPTH 3 def % recursion depth
/SIZE 16 def % image resolution

/TIMEOUT SIZE dup mul 10 mul cvi 120 add def % approximately 10 sec/pixel
/NUM_SPHERES 5 def

/ROV 25.0 def % angle of view

/AMB [0.02 0.02 0.02] def % ambient light

% list of spheres/lights in scene

% x y z r g b rad kd ks kt ki ir

/SPHERES [[[ 0.0 6.0 0.5] [1.0 1.0 1.0] 0.9 0.05 0.2 0.85 0.0 1.7]
((-1.0 8.0 -0.5] [1.0 0.5 0.2] 1.0 0.7 0.3 0.0 0.05 1.2]
([ 1.0 8,0 -0.5] [0.1 0.8 0.8] 1.0 0.3 0.7 0.0 0.0 1.2]
([ 3.0 -6.0 15.0] (1.0 0.8 1.0] 7.0 0.0 0.0 0.0 0.6 1.5]
([-3.0 -3.0 12.0] [0.8 1.0 1.0] 5.0 0.0 0.0 0.0 0.5 1.5]

] def
statusdict begin TIMEOUT setjobtimeout /waittimeout TIMEOUT def end
/initpage { /Courier findfont 10 scalefont setfont} def
/X 0 def /Y 1 def /Z 2 def /TOL Se~4 def
/BLACK [0.0 0.0 0.0] def /WHITE [1.0 1.0 1.0] def
/U 0.0 def /B 0.0 def
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% index of fields in sphere array
/cen O def /col 1 def /rad 2 def /kd 3 def
/ks 4 def /kt 5 def /kl 6 def /ir 7 def
/NEG_SIZE SIZE neg def
/MATRIX [SIZE 0 O NEG_SIZE 0 SIZE] def
/vec {3 array} def /VU vec def /vunit_a 0.0 def
% dot product, two arrays of three reals
/vdot {aload pop 4 -1 roll aload pop 4 -1 roll mul
2 -1 roll 4 -1 roll mul add 3 -2 roll mul add} def
% vcamb, sa, a, sb, b returns new array of sa*a + sb*b

/vecomb { aload pop 4 -1 roll dup dup 51 roll 31 roll mil
51 roll mul 41 roll mil 31 roll5 -2 roll aload pop
4 -1 roll dup dup 51 roll 31 roll ml5 1 roll mul
41 roll mul 31 roll4 -1 roll add 5 1 roll 3 -1 roll add 4 1 roll
add 3 1 roll vec astore } def
/vsub {aload pop 4 -1 roll aload pop 4 -1 roll sub 5 1 roll
3 -1 roll sub 4 1 roll exch sub 3 1 roll vec astore} def
/sml {aload pop 4 -1 roll dup dup 51 roll 3 1 roll mil
51 roll mul 4 1 roll mal 3 1 roll vec astore} def
/vunit { /vunit_a exch store 1.0 vunit_a dup vdot sqrt div vunit_a smul} def

/grayscale {
% convert to ntsc, then to grayscale
0.11 mul exch 0.59 mul add exch 0.30 mul add 255.0 mul cvi} def
/intersect { % returns best, tmin, rootp
7 dict begin /d exch def /p exch def /best -1 def /tmin 1e30 def
/rootp 0 def
0 1 NUM_SPHERES 1 sub {
/i exch def /sphere SPHERES i get def/VU sphere cen get p vsub store
/B d VU vdot store
/U B dup mul VU dup vdot sub sphere rad get dup mul add storeU 0.0 gt
{ /UB U sqgrt sub store U TOL 1t
{ /U 2.0B ml U sub store /B 1.0 store }
{ /B -1.0 store }
ifelse
U TOL ge U tmin 1t and
{ /best i store /tmin U store /rootp B store} if

}  if
} for best tmin rootp end
} def
/trace {

13 dict begin /d exch def /p exch def /level exch def
/saveocbj save def /color AMB vec copy def /level level 1 sub store
p d intersect /root exch def /v exch def /s exch def -1 s ne
{
/sphere SPHERES s get def/p 1.0 p v d vcomb store /n
sphere cen get p root 0.0 1t { exch } if vsub vunit def
sphere kd get 0.0 gt
{ 0 1 NUM SPHERES 1 sub
{ /i exch def /light SPHERES i get def light kl get 0.0 gt
{ /VU light cen get p vsub vunit store /v light k1l get
n VU vdot mul store v 0.0 gt p VU intersect
/B exch store /nd exch def i eq and
{ /color 1.0 color v light col get vcomb def } if
} if
} for
} if
color aload pop sphere col get aload vec copy /VU exch store
4 -1 roll mul 5 1 roll 3-1roll mul 41 roll ml3 1 roll
color astore pop /nd d n vdot neg store /color sphere ks get
sphere kd get color sphere kl get VU vcomb 0 level eq
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{ BLACK vec copy}
{ level p 1.0 d 2 nd mil n vcomb trace vec astore }
ifelse 1.0 3 -1 roll vcomb storerocot 0.0 gt
{ /v sphere ir get store }
{ /v 1.0 sphere ir get div store }
ifelse /U 1l v dup mul 1 nd dup mul sub mul sub store U 0.0 gt
{ /color 1.0 color sphere kt get 0 level eq
{ BLACK vec copy!}
{ level p v d v nd mul U sqrt sub n vcomb trace vec astore }
ifelse vcomb store
} if
} if color aload pop saveobj restore end
} def
/main {initpage /data SIZE dup mul string def
/half SIZE 0.5 mul def /i 0 def
/dy half AOV cvr 0.5 mul dup cos exch sin div mul def
/temp vec def 0 1 SIZE 1 sub
{ /y exch def 0 1 SIZE 1 sub
{ /x exch def data i /saveobj save def VU X x cvr half sub put
VUY dy put VU Z half y cvr sub put DEPTH BLACK VU vunit trace
grayscale saveobj restore put /i i 1 add store
} for
} for gsave .
% coarsen halftone screen to eliminate contouring you get with default setscreen of 50
currentscreen 3 -1 roll pop 18 3 1 roll setscreen
100 300 translate 400 400 scale SIZE SIZE 8 MATRIX {data} image
grestore 100 200 moveto (Statistics: ) show 100 190 moveto
(Size: ) show SIZE 10 string cvs show 100 180 moveto
(Depth: ) show DEPTH 3 string cvs show 100 170 moveto
(Running time: ) show usertime starttime sub 1000 div 20 string cvs show
showpage
} def /main load bind main stop

% SRRING

Low-cost

QUALITY
" Fracing
Tablet

40 Sheets

12in. x 8 in.
305 mm x 229 mm
No. 51280
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A Ray Tracing Bibliography

by Paul Heckbert and Eric Haines

(ph@miro.berkeley.edu,
hpfersleyelerich@hplabs.hp.com)

Amanatides, John, Alain Fournier, “Ray Casting using Divide
and Conquer in Screen Space”, Intl. Conf. on Engi-
neering and Computer Graphics, Beijing, China,
Aug. 1984, similar to SIGGRAPH ’'84 paper but
more emphasis on recursive screen subdivision, ex-
tents, (screen subdivision, bounding volume)

Amanatides, John, “Ray Tracing with Cones”, Computer
Graphics (SSGGRAPH '84 Proceedings), vol. 18,
no. 3, July 1984, pp. 129-135, ray tracing spheres
and polygons with circular conical rays, {cone
tracing, antialiasing}

Amanatides, John, “Ray Tracing with Cones”, Proceedings
of Graphics Interface ‘84, May 1984, pp. 97-98,
brief summary of his SIGGRAPH paper, {cone
tracing)

Amanatides, John, “A Fast Voxel Traversal Algorithm for
Ray Tracing”, Eurographics ‘87, North-Holland,
Amsterdam, uniform grid space subdivision

Appel, Arthur, “Some Techniques for Shading Machine
Renderings of Solids”, AFIPS 1968 Spring Joint
Computer Conf., vol. 32, 1968, pp. 37-45, first ray
tracing paper, light ray tracing, b&w pictures on
Calcomp plotter

Arnaldi, Bruno, Thierry Priol, Kadi Bouatouch, “A New
Space Subdivision Method for Ray Tracing CSG
Modelled Scenes”, Visual Computer, vol. 3, 1987,
pp. 98-108, {CSG}

Arvo, James, “Backward Ray Tracing”, SIGGRAPH '86
Developments in Ray Tracing seminar notes, Aug.
1986, light ray tracing

Arvo, James, David Kirk, “Fast Ray Tracing by Ray
Classification”, Computer Graphics (SSGGRAPH
'87 Proceedings), vol. 21, no. 4, July 1987, pp. 55-
64, {octree}, five dimensional space subdivision

Atherton, Peter R., “A Scanline Hidden Surface Removal
Procedure for Constructive Solid Geometry”,
Computer Graphics (SIGGRAPH'83 Proceedings),
vol. 17, no. 3, July 1983, pp. 73-82, {CSG}

Barr, Alan H., “Decal Projections”, SIGGRAPH ' 84 Mathe-
matics of Computer Graphics seminar notes, July
1984, {texture mapping}

Barr, Alan H., “Ray Tracing Deformed Surfaces”, Computer

Graphics (SSGGRAPH '86 Proceedings), vol. 20,
no. 4, Aug. 1986, pp. 287-296
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Bier, Eric A., “Solidviews, An Interactive Three-Dimen-
sional Illustrator”, BS & MS thesis, Dept. of EE&CS,
MIT, May 1983, use of Roth’s CSG ray tracer as
part of an interactive system, {CSG)

Blinn, James F., Martin E. Newell, “Texture and Reflection
in Computer Generated Images”, CACM, vol. 19,
no. 10, Oct. 1976, pp. 542-547, early paper on
texture mapping, discusses spherical sky textures,
{texture mapping, reflection)

Blinn, James F., “A Generalization of Algebraic Surface
Drawing”, ACM Trans. on Graphics, vol. 1, no. 3,
July 1982, pp. 235-256, ray tracing “blobby”
models: finding roots of sums of gaussians, {blob,
root finding}

Bouatouch, Kadi, “A New Algorithm of Space Tracing
Using a CSG Model”, Eurographics ‘87, North-
Holland, Amsterdam

Bouville, Christian, R. Brusq, J. L. Dubois, I. Marchal,
“Image Synthesis by Ray-Casting (in French)”,
Acta Electron. (France), vol. 26, no. 3-4, 1984, pp.
249-259

Bouville, Christian, J. L. Dubois, I. Marchal, “Generating
High Quality Pictures by Ray Tracing”, Eurogra-
Pphics ‘84, Copenhagen, Sept. 1984, pp. 161-177,
(also Computer Graphics Forum, vol 4, no 2, June
1985, pp. 87-99)

Bouville, Christian, “Bounding Ellipsoids for Ray-Fractal
Intersection”, Computer Graphics (SIGGRAPH ' 85
Proceedings), vol. 19, no. 3, July 1985, pp. 45-52,
{bounding volume}

Bouville, Christian, “Image Synthesis ThroughRay Tracing”,
Banc-Titre, France, Mar. 1985, pp. 50, {hardware)

Bronsvoort, Willem F., Fopke Klok, “Ray Tracing General
Sweep-Defined Objects”, 84-36, Dept. of Mathe-
matics and Informatics, Delft U. of Tech., Delft,
Netherlands, 1984

Bronsvoort, Willem F., Frederik W. Jansen, Jarke J. van
Wijk, “The Use of Ray Casting in Solid Modeling”,
Informatie, Netherlands, vol. 26, Jan. 1984, pp. 50-
59, {CSG}

Bronsvoort, Willem F., Jarke J. van Wijk, Frederik W.
Jansen, “Two Methods for Improving the Effi-
ciency of Ray Casting in Solid Modeling”, Com-
puter-Aided Design, vol. 16, no. 1, Jan. 1984, pp.
110-116, {CSG}, enhancements to Roth: scanline
interval enclosures, CSG tree optimization, and
recursive screen subdivision

Bronsvoort, Willem F., Fopke Klok, “Ray Tracing General-
ized Cylinders”, ACM Transactions on Graphics,
(note corrigendum in ACM TOG July 1987 issue,
v.6, no.3, p. 238-239), vol. 4, no. 4, Oct. 1985, pp.
291-303
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Brooks, Joan, “Extension and Adjuncts to the BRL-
COMGEOM Program”, (for Ballistic Research
Laboratories), Aug. 1974, NTIS AD/A-000 897,
MAGI.: intersection of ray and ellipsoid, ray tracing
in the punch card era, {CSG, quadric}

Brooks,Joan, Ragini Murarka, Daniel Onuoha, Frank Rahn,
Herbert A. Steinberg, “An Extension of the Combi-
natorial Geometry Technique for Modeling Vegeta-
tion and Terrain Features”, (for Ballistic Research
Laboratories),June 1974, NTIS AD-782 883, MAGI:
hierarchical bounding boxes, adaptive subsampling,
pine tree models, { CSG, bounding volume, botanical
tree}

Brown, Chris, “Special Purpose Computer Hardware for
Mechanical Design Systems”, Proc. 1981 National
Computer Graphics Assoc. Conf., pp. 403414

Bukow, Hans M. T., Michael J. Bailey, Warren H. Steven-
son, “Simulation of Reflectance Sensors Using Image
Synthesis Techniques™, Computers in Mechanical
Engineering, vol. 3, no. 4, Jan. 1985, pp. 69-74,
{CAM), simulating assembly line optical sensors

Chang, Arthur G., “Parallel Architectural Support for
Raytracing Graphics Techniques”, Masters thesis,
EECS Dept., UC Berkeley

Chattopadhyay, S., Akira Fujimoto, “Bi-directional Ray
Tracing”, Computer Graphics 1987, Tosiyasu Kunii
ed., Springer Verlag, Tokyo, 1987, pp. 335-343

Chung, W. L., “A New Method of View Synthesis for Solid
Modelling”, CAD84, Butterworth & Co, Guildford,
Surrey, UK, Apr. 1984, pp. 470-480, {CSG}

Cleary, John G., Brian Wyvill, Reddy Vatti, Graham M.
Birtwistle, “Design and Analysis of a Parallel Ray
Tracing Computer”, Proceedings Graphics Inter-
face ‘83, May 1983, pp. 33-34, (also Proceedings XI
Association of Simula Users Conference, 1983),
{hardware}, short note describing their project

Cleary, John G., Brian Wyvill, Graham M. Birtwistle,
Reddy Vatti, “Multiprocessor Ray Tracing”, Techni-
cal Report No. 83/128/17, Dept. of CS, U of Calgary,
Oct. 1983, {hardware}, analysis of square and cubi-
cal processor arrays for ray tracing

Cleary, John G., Geoff Wyvill, “An Analysis of an Algo-
rithm for Fast Ray-Tracing using Uniform Space
Subdivision”, Research Report 87/264/12, U. of
Calgary, Dept. of CS, 1987

Cook, Robert L., Thomas Porter, Loren Carpenter, “Dis-
tributed Ray Tracing”, Computer Graphics
(SIGGRAPH ' 84 Proceedings), vol. 18, no. 3, July
1984, pp. 137-145, Monte Carlo distribution of rays
1o get gloss, translucency, penumbras, depth of field,
motion blur, {probabilistic ray tracing, monte carlo,
motion blur, stochastic sampling)
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Cook, Robert L., “Stochastic Sampling in Computer
Graphics”, ACM Transactions on Graphics, vol. 5,
no. 1, Jan. 1986, pp. 51-72

Cook, Robert L., “Practical Aspects of Distributed Ray
Tracing”, SIGGRAPH ’86 Developments in Ray
Tracing seminar notes, Aug. 1986, {probabilistic
ray tracing}

Coquillart, S., “An Improvement of the Ray-Tracing
Algorithm”, Eurographics ‘85, Sept. 1985, North-
Holland, Amsterdam, pp. 77-88

Cordonnier, E., C. Bouville, I. Marchal, J. L. Dubois,
“Creating CSH Modelled Pictures for Ray-Casting
Display”, Eurographics ‘85, Sept. 1985, North-
Holland, Amsterdam

Dadoun, Norm, David G. Kirkpatrick, John P. Walsh, “The
Geometry of Beam Tracing”, Proc. of the Symp. on
Computational Geometry,June 1985, pp. 55-61, the
use of BSP trees and hierarchical bounding vol-
umes for fast beam intersection testing

Davis, J. Roy, Roger Nagel, Walter Guber, “A Model Mak-
ing and Display Technique for 3-D Pictures”, Pro-
ceedings of the 7th Annual Meeting of UAIDE, San
Francisco, Oct. 1968, pp. 47-72, {CSG}, Synthav-
ision genesis: CSG, primitives, optimization by
region adjacency lists and adaptive subdivision for
line drawings

Davis, Jon E., Michael J. Bailey, David C. Anderson, “Real-
istic Image Generation and the Modeling of Me-
chanical Solids”, Computers in Mechanical Engi-
neering,vol. 1,n0. 1, Aug. 1982, intro to CAD, solid
modeling, and Whitted ray tracing, pre-Roth

Davis, Jon E., “Recursive Ray Tracing for the Realistic
Display of Solid Models”, MSME thesis, Dept. of
ME, Purdue U., May 1982, {CAD}

Deguchi, Hiroshi, Hitoshi Nishimura, Hiroshi Yoshimura,
Toru Kawata, Isao Shirakawa, Koichi Omura, “A
Parallel Processing Scheme for Three-Dimensional
Image Creation”, Conf. Proc. Int. Symp. on Circuit
and Systems (ISCAS’84), 1984, pp. 1285-1288,
{hardware}, LINKS-1 hardware

Deguchi, Hiroshi, Hitoshi Nishimura, Toshikazu Tatsumi,
Toru Kawata, Isao Shirakawa, Koichi Omura,
“Performance Evaluation of Parallel Processing in
Computer Graphics System LINKS-17, submitted
to SIGGRAPH ‘85, 1985, {hardware)

Dippé,Mark A.Z., Erling Henry Wold, “Antialiasing Through
Stochastic Sampling”, Computer Graphics
(SIGGRAPH '85 Proceedings), vol. 19, no. 3, July

* 1985, pp. 69-78, { probabilistic ray tracing, stochas-
tic sampling}
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Dippé, Mark E., John Swensen, “An Adaptive Subdivision
Algorithm and Parallel Architecture for Realistic
Image Synthesis”, Computer Graphics (SIGGRAPH
'84 Proceedings), vol. 18, no. 3, July 1984, pp. 149-
158, 3-D network of processors, algorithm for
adaptive load distribution, {hardware)

Edwards, Bruce E., “Implementation of a Ray-Tracing
Algorithm for Rendering Superquadric Solids”,
Masters thesis, TR-82018, Rensselaer Polytechnic
Institute, Troy, NY, Dec. 1982, ray-traced unions
and differences of superquadrics, {superquadric)

Fitzhorn, Patrick A., “Realistic Image Synthesis: A Time
Complexity Analysis of Ray Tracing”, Masters
thesis, Dept. of CS, Colorado State U., Fort Collins,
CO, Spring 1982

Fujimoto, Akira, Kansei Iwata, “Accelerated Ray Tracing”,
Computer Graphics: Visual Technology and Art
(Proceedings of Computer Graphics Tokyo '85),
Tosiyasu Kunii ed., Springer Verlag, Tokyo, 1985,
pp- 41-65, {octree)

Fujimoto, Akira, Takayuki Tanaka, Kansei Iwata, “ARTS:
Accelerated Ray-Tracing System”,I[EEE Computer
Graphics and Applications, Apr. 1986, pp. 16-26,
{octree}

Gjoystdal, H., J. E. Reinhardsen, K. Astebol, “Computer
Representation of Complex 3-D Geological Struc-
tures Using a New ‘Solid Modeling’ Technique”,
Geophy. Prospect. (Netherlands), vol. 33, no. 8,
Dec. 1985, pp. 1195-1211, {dynamic ray tracing}

Glassner, Andrew S., “Space Subdivision for Fast Ray
Tracing”, IEEE Computer Graphics and Applica-
tions, vol. 4, no. 10, Oct. 1984, pp. 15-22, use of
octrees to speed intersection testing, {bounding
volume, octree)

Glassner, Andrew S., “Spacetime Ray Tracing for
Animation”, IEEE Computer Graphics and Appli-
cations, vol. 8, no. 2, March 1988, pp. 60-70

Goldsmith, Jeffrey, John Salmon, “A Ray Tracing System
for the Hypercube”, Caltech, 1984, (parallel proc-
essing}

Goldsmith, Jeffrey, John Salmon, “Automatic Creation of
Object Hierarchies for Ray Tracing”, IEEE Com-
puter Graphics and Applications, 1987, {ray trac-
ing, bounding volume}

Goldstein, RobertA., “A System for Computer Animation of

3-D Objects”, Proceedings of the 10th Annual
UAIDE Meeting, 1971

Goldstein,Robert A.,RogerNagel, “3-D Visual Simulation”,
Simulation, vol. 16, no. 1, Jan. 1971, pp. 25-31,
introduction to CSG, ray tracing, director's lan-
guage, (CSG)
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Graham, Eric, “Graphic Scene Simulations”, Amiga World,
May/June 1987, pp. 18, C source for sphere ray
tracer (runs on Amiga)

Haines, Eric A., Donald P. Greenberg, “The Light Buffer: A
Ray Tracer Shadow Testing Accelerator”, IEEE
Computer Graphics and Applications, vol. 6, no. 9,
Sept. 1986, pp. 6-16, {shading, ray tracing, shadows}

Haines, Eric, “A Proposal for Standard Graphics
Environments”, IEEE Computer Graphics and Ap-
plications, vol. 7, no. 11, Nov. 1987, pp. 3-5,
{benchmark},renderer benchmarking environments
and how to obtain them

Hall, Roy A., “A Methodology for Realistic Image Synthe-
sis”, Masters thesis, Comnell U., 1983, {shading,
color})

Hall, Roy A., Donald P. Greenberg, “A Testbed for Realistic
Image Synthesis”, IEEE Computer Graphics and
Applications, vol.3,no.8,Nov. 1983, pp. 10-20, con-
cerns shading and color more than ray tracing, but
nice pictures!, {shading, color)

Hanrahan, Pat, “Ray Tracing Algebraic Surfaces”, Com-
puter Graphics (SSGGRAPH ’83 Proceedings), vol.
17,n0. 3, July 1983, pp. 83-90, numerical techniques
for finding roots of polynomials, {root finding, alge-
braic surface)

Hanrahan, Pat, Paul S. Heckbert, “Introduction to Beam
Tracing”, Indl. Conf. on Engineering and Computer
Graphics, Beijing, China, Aug. 1984, pp. 286-289,
early version of their SIGGRAPH paper

Hanrahan, Pat, “Using Caching and Breadth-First Search to
Speed Up Ray-Tracing”, Graphics Interface ‘86,
May 1986, pp. 56-61, (seed fill, coherence}

Heckbert, Paul S., Pat Hanrahan, “Beam Tracing Polygonal
Objects”, Computer Graphics (SIGGRAPH ' 84 Pro-
ceedings), vol. 18, no. 3, July 1984, pp. 119-127,
Weiler-Atherton algorithm applied to ray tracing,
{polygon}

Heckbert, Paul S., “Ray Tracing JELL-O (R) Brand Gelatin”,
Computer Graphics (SIGGRAPH '87 Proceedings),
vol. 21, no. 4, July 1987, pp. 73-74

Jansen, Frederik, “Data Structures for Ray Tracing”,L.R. A.
Kessenered.,F.J. Petersed., M. L. P. van Lieroped.,
Data Structures for Raster Graphics, (Eurographic
Seminar), New York, 1986, Springer-Verlag, pp. 57-
73, {data structures, CSG}, overview of published
algorithms for ray tracing using spatial subdivision

Joy, Kenneth I., Murthy N. Bhetanabhotla, “Ray Tracing
Parametric Surface Patches Utilizing Numerical Tech-
niques and Ray Coherence”, Computer Graphics
(SIGGRAPH '86 Proceedings), vol. 20, no. 4, Aug.
1986, pp. 279-285
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Kajiya, James T., “Ray Tracing Parametric Patches”, Com-
puter Graphics (SSGGRAPH '’ 82 Proceedings), vol.
16, no. 3, July 1982, pp. 245-254, ray tracing
bivariate polynomial patches, {patch}

Kajiya, James T., “New Techniques for Ray Tracing Proce-
durally Defined Objects”, ACM Trans. on Graph-
ics, vol. 2, no. 3, July 1983, pp. 161-181, (also
appeared in SIGGRAPH ’83 Proceedings.), ray
tracing fractals, prisms, and surfaces of revolution,
{fractal)

Kajiya,JamesT., “SIGGRAPH "83 Tutorial onRay Tracing”,
SIGGRAPH '83 State of the Art in Image Synthesis
seminar notes, July 1983, good survey of ray trac-
ing

Kajiya, James T., Brian P. Von Herzen, “Ray Tracing
Volume Densities”, Computer Graphics
(SIGGRAPH '84 Proceedings), vol. 18, no. 3, July
1984, pp. 165-174, ray tracing and meteorological
simulation of clouds, {cloud)

Kajiya, James T., “The Rendering Equation”, Computer
Graphics (SSIGGRAPH '86 Proceedings), vol. 20,
no. 4, Aug. 1986, pp. 143-150, {shading, diffuse
reflection, radiosity)

Kaplan, MichaelR.,“Space-Tracing, A Constant Time Ray-
Tracer”, SSIGGRAPH '85 State of the Art in Image
Synthesis seminar notes, July 1985, like Glassner

Kay, Douglas S., Donald P. Greenberg, “Transparency for
Computer Synthesized Images”, Computer Graph-
ics (SIGGRAPH '79 Proceedings), vol. 13, no. 2,
Aug. 1979, pp. 158-164, 2.5-D ray tracing: refrac-
tion by warping background image, contains better
refraction formula than Whitted

Kay, Douglas S., “Transparency, Refraction, and Ray Trac-
ing for Computer Synthesized Images”, Masters
thesis, Cornell U., Jan. 1979

Kay, Timothy L., James T. Kajiya, “Ray Tracing Complex
Scenes”, Computer Graphics (SIGGRAPH '86 Pro-
ceedings), vol. 20, no. 4, Aug. 1986, pp. 269-278,
{bounding volume)

Kedem, G., J. L. Ellis, “The Raycasting Machine”, Proc.
IEEE Intl. Conf. on Computer Design: VLSI in
Computers (ICCD '84), (Port Chester, NY 8-11
Oct. 1984), IEEE Computer Society Press, Silver
Spring, MD, 1984, pp. 533-538

Kirk, David B., “The Simulation of Natural Features Using
Cone Tracing”, Advanced Computer Graphics
(Proc.of CG Tokyo ' 86), Tosiyasu Kunii ed., Sprin-
ger Verlag, Tokyo, 1986, pp. 129-144, {antiali-
asing}
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Kitaoka, Shoichi, “KIT: An Experimental Solid Modelling
System”, MS thesis, University of Utah, April 1985,
Roth-style ray tracer with the addition of several
new surfaces including patches, sweeps, etc. Pro-
duced “Scene with Corkscrew” on SIGGRAPH ' 85
back cover, (solid modeling, primitive shapes}

Kitaoka, Shoichi, “KIT: An Experimental Solid Modelling
System”, The Visual Computer, vol. 2, no. 1, Jan.
1986, pp. 9, Roth-style ray tracer with the addition
of several new surfaces including patches, sweeps,
etc., {solid modeling, primitive shapes}

Lee, Mark E., Richard A. Redner, Samuel P. Uselton, “Sta-
tistically Optimized Sampling for Distributed Ray
Tracing”, Computer Graphics (SIGGRAPH'’ 85 Pro-
ceedings), vol. 19, no. 3, July 1985, pp. 61-67,
{probabilistic ray tracing, stochastic sampling}

Levner, G., P. Tassinari, D. Marini, “A Simple Method for
Ray Tracing Bicubic Surfaces”, Computer Graph-
ics 1987, Tosiyasu Kunii ed., Springer Verlag,
Tokyo, 1987, pp. 285-302

Martin, R. R., “Recent Advances in Graphical Techniques”,
1985 European Conference on Solid Modeling,
(London, 9-10 Sept 1985), Oyez Sci. and Tech.
Services, London, 1985, {texture mapping}

Max, Nelson L., “Vectorized Procedural Models for Natural
Terrain: Waves and Islands in the Sunset”, Com-
puter Graphics (SIGGRAPH'81 Proceedings), vol.
15,no0. 3, Aug. 1981, pp. 317-324, ray tracing on a
CRAY + many tricks, {orientation code, colormap
animation, hardware, wave}

Max, Nelson L., “An Anti-Aliased Wave Reflection
Algorithm”, SIGGRAPH '82 Advanced Image
Synthesis seminar notes, July 1982, improved ray
tracing of waves, {wave)

Miller, Gene S., C. Robert Hoffman, “Illumination and
Reflection Maps: Simulated Objects in Simulated
andReal Environments”,SIGGRAPH ' 84 Advanced
Computer Graphics Animation seminar notes, July
1984, reflection maps: how to make and use them,
{illumination map}

Montcel, B. Tezenasdu, A. Nicolas, “ An Illumination Model
for Ray-Tracing”, Eurographics ‘85, Sept. 1985

Moravec, Hans P., “3D Graphics and the Wave Theory”,
Computer Graphics (SIGGRAPH' 81 Proceedings),
vol. 15,no. 3, Aug. 1981, pp. 289-296, illumination
by wave fronts, rather than light rays, {wave the-
ory}

Murakami, Kouichi, Hitoshi Matsumoto, “Ray Tracing
with Octree Data Structure”, Proc. 28th Informa-
tion Processing Conf., 1983
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Nemoto, Keiji, Takao Omachi, “An Adaptive Subdivision
by Sliding Boundary Surfaces for Fast Ray Trac-
ing”, Graphics Interface ‘86, May 1986, pp. 43-48,
{adaptive subdivision algorithm on a parallel archi-
tecture}

Nishimura, Hitoshi, Hiroshi Ohno, Toru Kawata, Isao
Shirakawa, Koichi Omura, “Links-1: A Parallel
Pipelined Multimicrocomputer System for Image
Creation”, Conference Proceedings of the 10th
Annual International Symposium on Computer
Architecture, SSIGARCH, 1983, pp. 387-394, a par-
allel hardware architecture being used for ray
traced animation; the paper does not discuss ray
tracing or their software, {hardware)

Ohta, Masataka, Mamoru Maekawa, ‘“Ray Coherence Theo-
rem and Constant Time Ray Tracing Algorithm”,
Computer Graphics 1987, Tosiyasu Kunii ed.,
Springer Verlag, Tokyo, 1987, pp. 303-314

Peachey, Darwyn R., “PORTRAY - An Image Synthesis
System for Realistic Computer Graphics”, TR 84-
18, Dept. of Computational Science, U. of Sas-
katchewan, Saskatoon, Saskatchewan, Canada,
1984, {modeling, shading}, excellent survey of
image synthesis, system issues

Peachey, Darwyn R., “PORTRAY - An Image Synthesis
System”, Graphics Interface ‘86, May 1986, pp.37-
42, {modeling, shading} ,image formats, condensed
version of U of Sask tech report

Peng, Q. S., “A Fast Ray Tracing Algorithm Using Space
Indexing Techniques”, Eurographics ‘87, North-
Holland, Amsterdam

Peterson, John W., “Ray Tracing General B-Splines”, Pro-
ceedings of the ACM Mountain Regional Confer-
ence, April, 1986, pp. 87, {B-splines, surfaces},
extensions to Sweeney’s patch algorithm to handle
a wider range of surfaces

Plunkett, D. J., M. J. Bailey, “The Vectorization of a Ray-
Tracing Algorithm for Improved Execution Speed”,
IEEE Computer Graphics and Applications, vol. 5,
no. 8, Aug. 1985, pp. 52-60

Potmesil, Michael, “Generating Three-Dimensional Surface
Models of Solid Objects from Multiple Projec-
tions”, PhD thesis, IPL-TR-033, Oct. 1982, Image
Processing Laboratory, RPI, Troy, NY, contains
brief description of his ray tracer, camera model
and motion blur as post-processes, appendix on
ray-patch intersection methods, {computer vision,
patch, quadtree}

Pulleyblank, Ron, John Kapenga, “The Feasibility of a VLSI
Chip for Ray Tracing Bicubic Patches”, IEEE
Computer Graphics and Applications, vol. 7,no. 3,
March 1987, pp. 33-44, {bicubic patch}
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Purgathofer, Wemner, “A Statistical Method for Adaptive
Stochastic Sampling”, Eurographics ‘86, 1986,
North-Holland, Amsterdam, pp. 145-152, {proba-
bilistic ray tracing}

Reddy, D. R., Steven M. Rubin, “Representation of Three-
Dimensional Objects”, CMU-CS-78-113, Dept. of
CS, Carnegie-Mellon U., Apr. 1978, {bounding
volume}

Rogers, DavidF., “Procedural Elements for Computer Graph-
ics”, McGraw-Hill, New York, 1985, {hidden
surface}, the only book on image synthesis, good
summary of ray tracing

Roth, Scott D., “Ray Casting for Modeling Solids”, Com-
puter Graphics and Image Processing, vol. 18, no.
2, Feb. 1982, pp. 109-144, the other classic ray
tracing paper, {CSG, hidden line}

Rubin, Steven M., Tumer Whitted, “A 3-Dimensional Rep-
resentation for Fast Rendering of Complex Scenes”,
Computer Graphics(SIGGRAPH '80 Proceedings),
vol. 14, no. 3, July 1980, pp. 110-116, hierarchical
bounding boxes, used to speed up ray tracing &
other algs, {bounding volume)

Sederberg, Thomas W., David C. Anderson, “Ray Tracing
of Steiner Patches”, Computer Graphics
(SIGGRAPH '84 Proceedings), vol. 18, no. 3, July
1984, pp. 159-164, implicitization of Steiner patch,
solution of resulting quartic, {patch, root finding}

Shinya, Mikio, Tokiichiro Takahashi, Seiichiro Naito, “Prin-
ciples and Applications of Pencil Tracing”, Com-
puter Graphics (SSGGRAPH'’ 87 Proceedings), vol.
21, no. 4, July 1987, pp. 45-54

Snyder, John M., Alan H. Barr, “Ray Tracing Complex
Models Containing Surface Tessellations”, Com-
puter Graphics (SIGGRAPH' 87 Proceedings), vol.
21, no. 4, July 1987, pp. 119-128, {parametric sur-
face, tessellation, 3D grid})

Speer, L. Richard, Tony D. DeRose, Brian A. Barsky, “A
Theoretical and Empirical Analysis of Coherent
Ray-Tracing”, Graphics Interface ‘85, May 1985,
{coherence}, they conclude that their cylinder-pierc-
ing optimization doesn’t work

Steinberg, Herbert A., “A Smooth Surface Based on Biquad-
ratic Patches”, IEEE Computer Graphics and Ap-
plications, vol. 4, no. 9, Sept. 1984, pp. 20-23, ray
tracing biquadratic and bicubic Coons patches,
(patch)

Steinberg, Herbert A., “Ray Tracing and CSG Applications”,
SIGGRAPH '85 Introduction to Solid Modeling
seminar notes, July 1985, {CSG)

Sweeney, Michael A. J., “The Waterloo Ray Tracing Pack-
age”, CS-85-35 (Master’s thesis), Dept of CS, U. of
Waterloo, Oct. 1985
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Sweeney, Michael, Richard H. Bartels, “Ray Tracing Free-
Form B-Spline Surfaces”, IEEE Computer Graph-
ics and Applications, vol. 6,n0.2, pp. 41, Feb. 1986

Tamminen, M., O. Karonen, M. Mantyla, “Ray-Casting and
Block Model Conversion Using a Spatial Index”,
Computer Aided Design, vol. 16, July 1984, pp.
203-208

Thomas, Spencer, *“Dispersive Refraction in Ray Tracing”,
The Visual Computer, vol. 2,no. 1,Jan. 1986, pp. 3-
8, prismatic effects

Toth, Daniel L., “On Ray Tracing Parametric Surfaces”,
Computer Graphics(SIGGRAPH'85 Proceedings),
vol. 19, no. 3, July 1985, pp. 171-179

Ullner, Mike K., “Parallel Machines for Computer Graph-
ics”, PhD thesis, California Institute of Technology,
1983, hardware for ray tracing, (hardware}

Vatti, Bala Rajareddy, “Multiprocessor Ray-Tracing”, MS
thesis, Dept. of CS, U of Calgary, May 1984, {par-
allel processing, space subdivision}, multiproces-
sor algorithm and uniprocessor simulation results,
regular space subdivision to reduce objectiray in-
tersections

Verbeck, Channing P., “Extended Geometries and Direc-
tional Intensity Variation for Light Sources”, Banc-
Titre, France, Mar. 1985, pp. 53-54, (shading, ray
tracing, numerical integration}

Wallace, John R., Michael F. Cohen, Donald P. Greenberg,
“A Two-Pass Solution to the Rendering Equation:
A Synthesis of Ray Tracing and Radiosity Methods”,
Computer Graphics (SIGGRAPH' 87 Proceedings),
vol. 21, no. 4, July 1987, pp. 311-320, (radiosity,
probabilistic ray tracing, z-buffer}

Warren, Van, “Geometric Hashing for Rendering Complex
Scenes”, MS thesis, University of Utah, May 1986,
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cubes, and traces the rays between cubes, { geomet-
ric hashing)

Weghorst, Hank, Gary Hooper, Donald P. Greenberg,
“Improved Computational Methods for Ray
Tracing”, ACM Trans. on Graphics, vol. 3, no. 1,
Jan. 1984, pp. 52-69, discussion of bounding vol-
umes, hierarchical structures and the “item buffer”,
{bounding volume}

Whelan, Daniel S., “A Multiprocessor Architecture for Real-
Time Computer Animation”, Computer Science TR
5200, Caltech, 1985, {hardware)

Whitted, Turner, “Processing Requirements for Hidden
Surface Elimination and Realistic Shading”, IEEE
Digest of Papers, COMPCON, Spring '82, pp. 245-
250, discussion of various visible surface and illu-
mination methods, including ray tracing, {effi-
ciency)
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Whitted, Tumner, “An Improved Illumination Model for
Shaded Display”, CACM, vol. 23, no. 6, June 1980,
pp- 343-349, the classic ray tracing paper

Whitted, Turner, “The Hacker’s Guide to Making Pretty
Pictures”, SIGGRAPH '85 Image Rendering Tricks
seminar notes, July 1985, general tricks for image
synthesis, includes C source for simple ray tracer

Wijk, Jarke J. van, Frederik W. Jansen, “Realism in Raster
Graphics”, Computers and Graphics, vol. 8, no. 2,
1984, pp. 217-219, {image synthesis}

Wijk, Jarke J. van, “Ray Tracing Objects Defined by Sweep-
ing Planar Cubic Splines”, ACM Trans. on Graph-
ics, vol. 3,no. 3, July 1984, pp. 223-237, ray tracing
prisms, cones, and surfaces of revolution

Wijk, Jarke J. van, “Ray Tracing Objects Defined by Sweep-
ing A Sphere”, Eurographics ‘84, Copenhagen,
Sept. 1984, pp. 73-82, (reprinted in Computers and
Graphics, Vol 9. No 3, 1985, pp. 283-290)

Wyvill, Geoff, A. Ward, T. Brown, “Sketches by Ray Trac-
ing”, Research Report 1/1/87, Dept. of CS, U. of
Otago, New Zealand, (hidden line}, line drawing

Wiyvill, Geoff, Tosiyasu L. Kunii, Yasuto Shirai, “Space
Division for Ray Tracing in CSG”, IEEE Computer
Graphics and Applications, Apr. 1986, pp. 28-34,
{CSG}

Yamamoto, Tsuyoshi, “The Three Dimensional Computer
Graphics”, CQ Publishing, 1983, a Japanese book
on ray tracing! No English, but some BASIC(!)
listings of ray tracing programs

Yasuda,T.,S. Yokoi,J. I. Toriwaki, S. Tsuruoka, Y. Miyake,
“An Improved Ray Tracing Algorithm for Render-
ing Transparent Objects (in Japanese)”, Trans. Inf.
Process. Soc. of Japan, vol. 25, no. 6, 1984, pp. 953-
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Yokoi, Shigeki, T. Yasuda, Jun-ichiro Toriwaki, “Simplified
Ray Tracing Algorithms for Rendering Transparent
Objects”, Technical Report, Information Engineer-
ing Dept., Nagoya University, Japan
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Solution to
Last Issue's Puzzie

by Eric Haines
(hpfcrsleyelerich@hplabs.hp.com)

The answer to the puzzle: there are a few subtle
perceptual bugs which occur when using this method,
depending on implementation. Basically, it boils down to
“does this 'ambient' light cast a shadow for reflected and
refracted ray intersections?” and “does the 'ambient' light
create a specular highlight?”

If it does cast a shadow, then you’ve just added a
noticeable expense to your ray tracer. The ‘ambient’ light
is now just another light source for non-eye rays, and has
to be tested as such - your little bit of added realism has
just cost a fair bit of compute time for scenes which spawn
a lot of rays. The 'bug’ is simply that the objects now each
cast another shadow, and these shadows are only visible in
reflections and refractions. For example, a ball on a plane
lit by one light and your 'ambient’ light seems to cast but
one shadow as viewed by the eye. If you look in a mirror
behind the ball you see in the reflection that there are two
shadows. This is what I call a perceptual bug: it’s
physically correct, but is almost never seen in the physical

world. A colored glass ball will have a red filter spot
appear behind it, and this defect can be seen within the
image of the ball itself (my clue about the Hall model was
simply that he adds a number of transparency effects to his
model).

However, the standard way to implement the 'ambient’
light at the eye is to have it never cast a shadow. The
major problem here is that this assumption is not physi-
cally based. This error gives rise to other perceptual bugs,
such as the ball in the mirror now being dark on the far
side for no apparent reason (again, this method will cause
some odd problems using the Hall model when looking
through a colored ball).

Another annoying problem is that the sphere itself will
have a specular highlight always at the closest point to the
eye (I assume the 'ambient’ light was turned on to give
definition to objects in shadow, and not for its own sake).
Reflected objects will also have highlights in places where
they didn’t occur when using a simple ambient add-in
term. One quick solution is to not perform specular
highlighting for the ‘ambient’ light (this also makes the
‘ambient’ light faster to compute).

The puzzle question is open ended: these are just my
thoughts on what are the pitfalls of this trick. It’s a useful
trick, but is not superior to a simple ambient term in all
cases. Essentially, it all comes down to deciding what
effects are desirable. ¢
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The Notebooks of Leonardo Da Vinci, Volume | (Dover Publications, NY)

Y A

>}

June 1988 17



The Ray Tracing News

Interactive SIMD
Ray Tracing
by Russ Tuck

(tuck@cs.unc.edu)

1. Introduction

Ray Tracing is widely recognized as a very powerful,
general, and slow means of generating realistic computer-
generated images. This paper will explore the use of mas-
sively parallel SIMD (Single-Instruction, Multiple-Data)
computers to generate ray traced images at interactive
rates (at least 10 frames per second). Real and then
hypothetical SIMD machines will be considered.

I assume the reader is familiar with ray tracing algo-
rithms for ordinary sequential computers, including dis-
tributed ray tracing and the rendering equation. I also
assume the reader is familiar with the basic characteristics
of SIMD computers. Familiarity with the Connection
Machine (CM) [Hil85, Cor87], Massively Parallel Proces-
sor (MPP) [Pot85], and Pixel-Planes (Pxpl) [FGH*85]
architectures is helpful, but not required.

The rest of this paper discusses in sequence: terminol-
ogy, a simple algorithm for SIMD ray tracing, some pub-
lished algorithms for SIMD ray tracing, and some new
algorithms for SIMD ray tracing.

2. Teminology

The scene to be rendered consists of a database of
primitives. A ray is a straight-line segment of the path a
photon of light might take. A sample is a path plus
additional shadow rays: one from each primitive the ray
path intersects to each light source. Kajiya's approxima-
tion of the rendering equation is based on computing
selected samples at each pixel.

3. One PE per Pixel

The simplest way to do SIMD ray tracing is to assign
a processing element (PE) to each pixel and broadcast the
scene database repeatedly. Each PE computes a path or
sample by sequentially intersecting each ray with the
entire database to find which (if any) primitive the ray hits
first. This intersection is used to compute the direction of
the next ray in the path, and the directions of the shadow
rays if a sample is being computed. Each PE, executing in
lockstep with all the others, intersects its current ray with
the database as follows:

set minimum intersection distance to infinity.
for each primitive in database (as it is broadcast):
find distance along ray to intersection with this primitive.
if this distance is less than minimum
set minimum to this distance.
compute and save surface normal at intersection.

4. Connection Machine (CM) Results

Franklin Crow [Cro88, Cro87]reports that Karl Sims
at the MIT Media Lab has written a ray tracing program
for the Connection Machine. It uses the basic algorithm
described above to compute a single path three rays deep
at each pixel. Some surfaces were texture mapped, with
one pixel of the map stored at each PE. The CM’s global
routing network was used to retrieve the relevant texture
pixel during the color calculation for rays that hit textured
surfaces. A 128 by 128 PE array was used to compute a
512 by 512 image, with each PE handling 16 pixels. A
scene consisting of a few spheres and planes was gener-
ated in about 40 seconds. :

5. Massively Parallel Processor (MPP) Methods

McAnulty and Wainer [MW86] described an unimple-
mented ray tracing system for Constructive Solid Geome-
try (CSG) models on the MPP. It uses the method of
section 3, adding a mechanism for evaluating the combin-
ing operations of the CSG tree. This is necessary because
the first intersection of the ray with the overall object is
not necessarily the same as the first intersection of the ray
with a primitive.

Dorband [Dor87] presents an unimplemented algo-
rithm for doing ray tracing on the MPP with sort computa-
tion, which his paper references but does not fully de-
scribe. This algorithm assigns a PE to each ray and each
primitive. Each ray intersection operation builds and uses
the next level of an implicit octree. In the process, it
alternates between making eight copies each of all
remaining rays and primitives, and discarding those copies
which it determines do not participate in an intersection.
Some issues are not dealt with, including the extent to
which this data duplication will limit the scene complexity
or image resolution.

6. Successive Refinement on Pixel-Planes 5
Roman Kuchkuda, a graduate of the UNC-CH
Computer Science Department, has proposed that ray
tracing be used for successive refinement of images
produced by faster techniques on Pixel-Planes 5 (PxplS)
Pixel-Planes 4 (Pxpl) has too little memory per pixel for
ray intersection calculations. He suggests that the interac-
tive z-buffer rendering code be slightly extended to
compute the first first ray. If the image remains static long
enough, the image can be improved with additional Tays as
a path, sample, and multiple samples are computed. This
would be a logical extension of the successive refinements
already used for anti-aliasing on Pxpl4. In light of the
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time estimates presented below, it also appears to be the
most practical way of using ray tracing with complex
scenes on PxplS.

7. Time Estimate for Pixel-Planes §

Intersection calculations dominate the execution time
of ray tracers, especially those which naively intersect
every ray with every primitive. So, I will use an estimate
of the time required for intersection calculations as an
estimate of the entire ray tracing time.

Kuchkuda presents a simple but complete ray tracing
program [Kuc87]. I counted the operations it uses to
intersect a ray with a primitive. This includes finding the
distance along the ray to its intersection (if any) with the
primitive, and the surface normal at this point. For a
sphere, this takes 11 additions, 8 multiplications, 3
divisions, and 1 square root. A triangle requires 17 addi-
tions, 18 multiplications, and 1 division,

I obtained rough estimates of bit-serial operations re-
quired for single precision (32-bit IEEE format) floating-
point calculations on Pixel-Planes from John Eyles. A
ray-primitive intersection calculation takes about 52,400
bit-serial operations for a sphere, and about 56,800 for a
triangle. Rounding these counts up to 60,000 simplifies
calculations. This should more than compensate for the
integer overhead computation ignored in these operation
counts. Pixel-Planes 5 PEs are designed to execute
40,000,000 bit-serial operations per second. This allows
the computation of 666 intersections per second, or 666/
(number of primitives) rays per second.

Let’s see how much interactive ray tracing we can do
with this computing power. A Pixel-Planes 5 machine can
have 256K PEs, one per pixel in a 512 by 512 image.
Tracing samples 3 rays deep with one light source takes 6
rays per sample, or 60 rays per second at 10 frames per
second. This will be possible for trivial databases with 11
or fewer primitives. The image can be successively
refined by computing additional and deeper samples.

8. Multiple PEs per Pixel

This section explores the potential for greater parallel-
ism, using multiple PEs per pixel for faster ray tracing. In
many cases, the methods discussed here give a near linear
speedup as more PEs are used per pixel. They require
inter-PE communication in order to (1) perform reduction
operations (eg, maximum, sum) on a group of adjacent
PEs, and (2) broadcast a value computed in a particular PE
to a group of adjacent PEs. Ideally, both operations should
take time logarithmic in group size. A tree or Cube
Connected Cycles network [PV81] can provide this. So
can a hypercube (binary n-cube), but it uses many more
wires. For modest sized groups, an inexpensive 2D grid
network is sufficient.
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8.1. OnePEperSample

An obvious extension of the method of section 3 is to
compute multiple samples for each pixel simultaneously in
different PEs. Clumps of adjacent PEs can be assigned to
the same pixel. This collapses some of the successive
refinement into the original image, and makes further
successive refinement faster.

8.2. Multiple PEs per Sample

If there are ! light sources in a scene, the ! shadow
rays at each level can be computed in parallel with the ray
to the next level. This allows /+1 PEs to compute a sample
srays deep in the time it takes to trace s+1 rays. After
each ray trace, the shadow rays are combined with a
reduction operation, and the begin point of the next set of
shadow rays is broadcast from the PE that computed the
ray to the next level.

8.3. Muttiple PEs per Ray

A group of r PEs can share the work of intersecting a
single ray with the database. Let the PEs be numbered
0...r-1 and each PE p be responsible for every r’th
primitive, beginning with primitive p. Now r primitives
can be broadcast sequentially and then intersected in
parallel. These different intersections are then combined
to find the first primitive the ray hits. Approximately 200
primitives can be broadcast in the time it takes to compute
one ray-primitive intersection. Finding the first intersec-
tion in a group of 200 PEs should take less than 10% of the
time needed to find a ray-primitive intersection. This
means 200 PEs assigned to a ray can trace it almost 100
times as fast as a single PE. 11 PEs can trace a ray about
10 times faster than 1.

8.4 Speed and PEs

The previous sections have described several levels at
which parallelism can be used to make ray tracing faster.
These can be used together or independently. Let’s
examine the potential speed and number of PEs used if
they are all used together. Assume that  PEs are used to
compute each ray, that one ray-primitive intersection cal-
culation takes time ¢, that a primitive can be broadcast in
ct, and that s samples per pixel are computed in parallel.
Each sample (path) is d rays deep, and the database has /
light sources among d primitives. Then P PEs are used to
compute a pixel in time T, where P = rs(/+1) and

T =p(d+1)

c+%t _ p@+)(cr+1y
r r
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(Editor’s Note: we repeat the equation here for
convenience):

1

7

(= P @d@+D(r+1)

T = p(d+1) -

c+

Note that in these equations, increasing s and / im-
proves image quality and increases P without affecting T.
Increasing s also makes the image improve more in each
iterative refinement step. Increasing d improves image
quality and increases T without affecting P. Increasing r
increases P and decreases T, at first linearly but asymptoti-
cally approaching a factor of ¢, but does not affect image
quality. In the normal case of p > r, p increases T and
image complexity without affecting P. For Pixel-Planes 5,
the machine-dependant constants have values ¢ = .005 and
t=1.5ms.

Although it is not yet practical to build machines with
more than one PE per pixel, chip and packaging technolo-
gies are improving rapidly. Over the next 10 years, SIMD
machines with 100 or even 1000 PEs per pixel may
become practical. These PEs will probably also be 100 or
even 1000 times faster than today’s.

9 Conclusions

SIMD computers can be used effectively for ray
tracing. Pixel-Planes 5 will be able to interactively ray
trace trivial images. For complex scenes, ray tracing will
be a natural successive refinement process following initial
z-buffer rendering.

Essentially unlimited numbers of PEs can be used ef-
fectively to speed ray tracing and improve images. Future
SIMD machines with more (and faster) PEs can make
interactive ray tracing practical for complex scenes and
high resolution images. «
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