
Hi everyone, my name is Maxim. 
At Intel I’m driving the team responsible for tracking OpenCL perf/benchmarks, creating 
collaterals and doing technology evangelization.
But today I’m speaking solely on MY own Behalf

Today Android and Windows phones and tablets, as well as iOS devices and many other 
things in your hands are actually a full-blown, general-purpose computers.
Even though these may be dirt-cheap phones, for many people in emerging markets these 
would be their first computer.

1



So in this talk we will characterize the opportunities and limitations of mobile thru the 
perspective of the industry-adopted compute APIs.
We have really packed agenda, so I would ask to delay any questions to the very end
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Why do we need compute in mobile?
The simplest basic answer is - we have compute usages that do not fit graphics pipeline
We have things like LiquidFun solver in Android RS, or Bullet engine in OpenCL
Also there are various media things plus fancy UI effects like animation, shadows or ripples
Finally, computationally intensive things like Speech Recognition and all sorts of CV

And  it is not only about usages- also there is a good bulk of hardware to expose
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Again, the focus of the talk is compute on the end-user devices, not things like thin client or
cloud computing.

From this point of view, HPC always less cares about device compatibility- mostly sticking to 
the specific vendor and/or API.
I myself came from a regular “client” segment rather than from HPC, but still recognized 
mobile realities are very different:
• Different vendors’ architectures are substantially more diverged in mobile (considering 

things ILP vs TLP, different SIMD options, tile-based architectures, etc) which limits the 
optimization path.
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As I said before your Android or iOS device is in fact very similar to your home or office 
computer: it is effectively tiny, low-power laptop, with touch screen replacing the keyboard 

So most laptops and phone/tablets enjoy the CPU-GPU Unified Memory (and things like 
shared caches) which make the life easier, comparing to NUMA and other oddities that are 
regular to HPC.
Also just like for say laptops, the results of mobile Compute are often related to graphics by 
means of being displayed in some way

Finally Also keep in mind that your mobile processor is more than just CPU and GPU
- ISP in camera and maybe multiple DSPs- all the things your compute API of choice should 

efficiently do interoperability with
And of course- different tradeoffs for power 

One important implication of these differences  is that Mobile does require different API 
for Compute to accommodate these challenges 
But first, let’s see what a typical GPU is capable for
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General interactivity of the Mobile implies real-time frame rates
Current GPU ballpark is of ~100 Gflops, but ~300 gflops are NOT unheard
Bandwidth figures remain way behind and will stay that way for the predictable future 
(SIGGRAPH-2013-SamMartinEtAl-Challenges.pdf) 

This is especially important as only the rendering leftovers are available for compute and 
any significant compute horsepower demand can be really prohibitive for real-time
One immediate implication Implication: in the mobile the CPU is nowhere “just a fallback” 
device.
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If you do a lot of processing on CPU today and just seek for a speedup …you probably not 
very intersted
We will keep discussing APIs along the dimensions from this foil and provide summary in 
the very end
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RenderScript seems to be designed exactly around the wishes from the previous section.
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It operates notion of user scripts that are actually written using C-like language, with many 
CPU-attributed features like support for recursion
Most host APIs (e.g. execute and data copying but of course not alloc) have script-level 
equivalents

Also there are Intrinsics that are built-in functions that perform well-defined operations for 
image processing
Some intrinsics may run on special-purpose processors

What I really love in Rs is the reflected layer APIs that are a set of classes that are generated 
from your Renderscript code by build tools. This auto-generated layer is basically a wrapper 
around the Renderscript code ( including script global vars). 
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Here is example… let’s inspect the kernel code first
1)The function root() is conceptually similar to main() in C. When a script is invoked by the 
runtime, this is the function that will be called for each item in the incoming allocation
In this simple example you still can spot few kernel language features: 2) unpack/pack 
pixel functions and 
3)math built-in . It is also possible to call scripts from the scripts, but I would refer to the 
foils in backup on the advanced topics
On the host side
4) Renderscript applications need a context object. 5)Notice the glue class , which is 
generated by the compiler.  Scripts are raw resources in an application’s APK stored as LLVM 
code, so that scripts are compiled on the host with clang, and all the high level 
optimizations are happening at the application compilation stage. The translation to actual 
device code and device-specific optimizations still happens in the runtime. 6)The next 
function calls create a compute allocation from the Bitmap and the output allocation. We 
also specify the potential uses so the system will choose the correct type of memory. We 
will cover usage flags in details later. 7) Finally we invoke a root function so it does a 
compute launch. The forEach will run across multiple threads if the device supports these, 
it may actually occur on the CPU/GPU or DSP. 8) Finally we wait for completion and copy 
the result to some output bitmap. We will cope with this copying later.
Notice that this  Java code is really simple!
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A root function does a compute launch doing implicit looping over each and every element 
of the input allocation.

Declarations…
1)A script may have an input Allocation, an output Allocation, or both. 
2) If more than one input or output is required, those objects should be bound to script 
globals. Notice the FilterScipt style of script declarations like having no pointers, even 
though the FilterScript is deprecated this style is generally advised as GPU compilers 
friendlier.
3)A script  may access the coordinates of the current execution using the x, y, 
and z arguments. These arguments are optional

This concept of the implicit parallelism will be really important for the rest of presentation. 
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You can group scripts together and execute them all with a single call as if they were part of 
a single script. 
This allows Renderscript to optimize execution of the scripts in interesting ways: for 
example fuse pipeline to improve data locality which somewhat alleviates missing support 
for execution groups and shared memory – sort of explicit tiling available in for example in 
OpenCL

The API is straightforward:
1)You create a ScriptBuilder, 
2)add the scripts
3)And finalize the sequence
Then you 4)specify the inputs/outputs 
5)fire and forget
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As information and especially non-toy examples of RS are really scattered, here is the link to 
Google’s example and test in the Android repository. 
At the moment, since general focus of RS is image processing or computational 
photography, so the ImageProcessing seems to an important benchmark in the community 
and probably Google
And I put a link with very impressive numbers for the ImageProcessing benchmark.
In general it clearly demonstrates that  GPUs are generally much better for things like 
typical images manipulations.
But as you can imagine there are opposite cases for algorithms are really faster on CPU and 
this is promise of RS runtime to pick up best device for any particular task automatically.
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Since the time the RS was first shipped in Android 3.0 (and was in use by platform apps 
such as wallpapers), the major leap was Android 4.2 with RS GPU acceleration
Now it offers dedicated flag for RS output sharing, e.g with OpenGL
Notice the USAGE_SCRIPT flag that indicates that the Allocation will be bound to and 
accessed by scripts (this is remnant of time when RS was also a graphics API)

The general point of sharing is 1) setting the underlying surface for Allocation
2)and synch upon update
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Now with new Camera HAL in Lollipop the USAGE_IO_INPUT is alos supported. It is conceptually similar to 
output sharing, but now you get surface from the Allocation and pass it to some producer. Then you just wait 
for the data to arrive

Until API Level 21 the IO_INPUT worked only for Canvas
mAllocation.getSurface();

Canvas canvas = surface.lockCanvas();
//draw
….
surface.unlockCanvasAndPost(canvas);

mAllocation.ioReceive();
Warning: this code is not HW accelerated
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Maybe the only truly HW-vendor agnostic tool, available as a part of Android Device 
Monitor in Android Studio and Eclipse (first screenshot),
Then you should select tracing in the ADM itself (second picture)  and finally you can look 
to the trace in the Chrome (3)

It is the only tool by the best of my knowledge that supports displaying all RS calls on the 
timeline – for example here I can see how forEach for my kernel root function runs in 
parallel with copying the results from prev. frame
Also it supports OpenGL (but still not the Compute Shaders) and what I love most: some 
machinery behind GUI elements like views and bitmaps
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Well I was having hard times figuring out where a script actually run?
Look for RenderScript diagnostics in the logcat output:
Look to any tool that tracks CPU/GPU activity for indirect indications
Remember that things like recursion trigger the CPU fallback
And intrinisics presumably may run on DSP
The potential downside of any autiomatic scheduler is that if it decided to run some RS on 
the CPU concurrently with  the rest of your Java or Native parallel code this would easily 
oversubscribe the CPU, so a general Android tip to never run heavy things on main thread 
holds true
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Summary is that RenderScript is really high-level API, with deep integration into the 
underlying OS. This allows to keep the API really focused and minimalistic, but limits 
numbers of low-level optimizations, I mean the missing support for the shared or local 
memory.
Also though multiple devices are supported in theory, but manual scheduling or even 
device selection is not possible.
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Now let’s discuss OpenCL which is somewhat opposite case by many points
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OpenCL does have devices, but highly abstracts the entire notion. So you have 1) host 
which is where your main program run and the 2) OpenCL devices that look identically from 
the SW perspective, devices may include multi-core CPUs, GPUs, Cell-type 
architectures and other parallel processors such as DSPs, or other fixed function blocks

Feature-wise OpenCL is quite similar to CUDA, but being entirely vendor-controlled 
language the CUDA is typically ahead of OpenCL, since there is no need for agreement on 
features  - like discussions Khronos  group drives for OpenCL each time, leading to Least 
Common Denominator solution in many cases. 
But of course CUDA supported just NV GPUs

Alos unlike CUDA where you need the entire toolchain from NV, with OpenCL you can just 
use your favorite host compiler, 3) as basically you only link with the OpenCL library from 
khronos and that's it.
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The big idea behind OPenCL is generalized notion of n-dimensional space of work-items to 
operate on. 
So instead of explicit loops 1) in your  C-code now you specify NDRanges and you write 
kernels that are automatically executed for each point of the NDRange’s index space
2) each point is having unique ID

This is very similar to RenderScript
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Everything in runtime happens within the OpenCL context: Context is a sandbox for your 
OpenCL code and resources.
OpenGL is nowhere easier if you want plain compute, given the binding, targets, usages, 
need for quad setup and fake rendering if you use pixel shaders, etc
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I wouldn’t go much into details on OpenCL workflow- just refer to the backup offline, as 
relations of the OpenCL runtime objects are fairly complex, however this is quite similar to 
CUDA again
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OpenCL spec doesn’t mandate any particular order of execution for individual work-items, 
which opens doors for efficient vectorization and threading. But still spec allows you to 
group work-items in work-groups to share local memory and work-group barriers.

The local (or “shared” in OpenGL/CUDA parlance) memory is essentially a scratchpad used 
for explicit cashing. It is quite vendor-specific trick though, as  in some GPUs it is actually 
mapped to the same system mem (like for low-power Freescale’s multimedia processors 
you can find in Kindle).

For the rest of OpenCL memory types…well, for System On a Chip solutions  the  global 
OpenCL mem is basically backed with regular system mem, and the private mem is just like 
stack which is cached by HW or simply kept in registers (if the size permits)
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Finally a question on which devices OpenCL is supported

You should separate the formal OpenCL support for any particular device, and actual driver 
availability for the SPECIFIC OS.

For example you can find the device you are looking for in the official khronos list which is 
the first link on the page, but be careful as it may be conformant on some weird Embedded 
Linux installation, like for Vivante GPUs, while Android OpenCL drivers may also exist (but 
not passing all the official conformance routine, just like MediaTek’s products).

And there is no consistency here – for example Sony offers just OCL 1.1 drivers for it’s 
Snapdragon based phones, while QCOM already offer OCL 1.2 drivers
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Contrary to a popular belief, the fact the OpenCL natively talks to a larger range of devices, 
doesn't mean that your code will actually run on all of them. So keep OpenCL versions and 
profiles in mind
With CUDA it is less apparent as range of hardware supported is smaller, you still need to 
distinguish the architectures (pre-Fermi, Fermi, Kepler, and finally Maxwell for the next 
Tegra).
And yes there are caveats even when porting from native code – this is about last bullet 
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To summarize the difference of Embedded profile: many many things are OPTIONAL and 
accessed thru extensions,  64-bit data types like long or double types for example and  also
all sort of atomics 
EP can also be not fully IEEE compiant
There is no Embedded profile  in CUDA btw, so Tegra offers the same CUDA as you may find 
in the full-blown HPC server solutions but mabe some things are backed by SW
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Few more examples of hardware-implied limitations  that basically match the typical 
OpenGL-compute limits as we will study shortly
But unlike OpenGL ES the number of channels and data types for images in OPenCL is really 
limited
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Some vendors provide extended functionality over the standard OpenCL spec via 
extensions. These are still blessed by Khronos but provided by vendors within their 
drivers/SDKs. 
Specifically, interoperability with the OpenGL is managed through dedicated extension. 
There are many caveats to get actual zero-copy interoperability, for example order of 
context creation and resource allocations, synchronization and so on.

There are also extensions like cl_khr_egl_image which allows to share data thru EGLImage ( 
with camera, video decoders, native surfaces, etc)
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There are of benchmarks comparing OpenCL to RenderSript and the rest of APIs for 
example Compubench from Kishonti.
I intentionally didn’t put any specific perf numbers here, as these are fluctuating greatly 
between devices:

On GPUs, whether OpenCL or RenderScript is faster varies greatly, but typically no clear
performance advantage, unless you tune the code.
Another interesting observation is that in all my experiments the stability of FPS is also very 
device-dependent (supposedly due to different level of interaction with 3D and rest of 
Android for each implementation)

IF you want to play some identical coded in both APIs yourself, try the code from the links.
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Summary is that OpenCL is really low-level dedicated API for Compute,  everything in your 
hand, so all sort of scheduling and tuning are possible.

Having no OS integration might be troublesome as OS might need to have control in many 
situations (e.g. when the battery is low).
Another implication is that OpenCL typically requires installing a separate driver and 
separate libraries. 

Keeping the actual support question separated for a while, the OpenCL seem to have the 
strongest portability promise anyway.
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Apple took a clean-room way with it’s  new unified graphics and compute API
From the kernel language persp, the Metal uses C++11 both or shading and compute 
kernels, which similarly to RS  are compiled to IR (AIR).

Metal is not related to Swift, it’s original API is ObjC, but Metal is callable from Swift (no 
option for straight C/C++ by the best of my knowledge )
I’ll use Swift syntax for subsequent examples

We wouldn’t cover the graphics side of things in this preso. However Metal exposes many 
similarities to DX12 or Mantle, for example textures and samplers are fully separated (like 
D3D, unlike GL)
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Overall, Metal is similar in functionality to OpenCL and it is more about having 
niceties such as C++11 support in the kernel language (the static subset) so you can 
use templates, overloading, some static usage of classes etc.  For the rest it’s 
capabilities approximately matches those of OpenGL Compute or OpenCL

In contrast to Metal the OpenCL 2.0 also supports:
atomic_(u)long*
atomic_float and atomic_double*
atomic_(u)intptr_t*, atomic_size_t*, atomic_ptrdiff_t*
*requires additional OpenCL extensions
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Being the subset of C++11 the Metal Language 
Supports what you’d expect: templates, operator overloading, …
Leaves out what you’d expect: virtual functions, exceptions, stdlib, …

Unlike RenderScript, you don’t have recursion, and no dynamic parallelism either
Metal uses C++11 attribute syntax for linking user-defined parameters to 
1) API binding slot
2) Or connection to system-defined input or output
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Again, if you have used OpenCL or CUDA, then your skills will transfer easily to Metal. 
Unlike OpenCL in Metal the things are GPU-only: Currently only works on GPUs, and not 
say on a CPU or DSP.
Command queues  are similar to multiple streams in CUDA or multiple command queues in 
OpenCL. 
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Graphics programmers will also appreciate the tight integration with the graphics pipeline,
similarly to GL compute.
On the memory model side you can create CPU-GPU shared buffers just like with OpenCL.  

Finally parallelism is achieved by creating multiple command buffers- one or many for compute and another one or many of them) for 
rendering, which again matches OpenCL
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Again, if you know any GPU compute APIs like OpenCL or CUDA etc. you will be at home 
with Metal, 1) since here you again have work-items organized in work-groups (16kB of 
local memory) with barrier synch.

Total work is specified as workgroup size * number of workgroups, just like in GLES-
compute, unlike OpenCL where you specify your work with finer granularity and can use 
offsets and other advanced things

MTLComputeCommandEncoder encodes data-parallel compute processing state and 
commands that can be executed on the device. You can create “monolithic” pipeline sate 
object for compute (just like for rendering) or use dedicted functins
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Summary is that Metal is clearly GPU-oriented, unified compute/rendering API.
It offers advanced kernel language and many low-level features plus tight integration with 
the specific OS.
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Fragment or pixel shaders actually  have been used for a long time to run some level of 
general compute. Indeed, as long as the data is read by the shader, it can compute more or 
less whatever it wants from the data, and output the computed result back to the FBO. 
Probably the biggest limitation here is the lack of scatter support: you cannot write to an 
arbitrary location in the FBO.
Anyway, the resulting texture can then be used as a source for any other fragment shaders
in the rendering pipeline or just displayed.

And there are many things you should do like specifying the quad , texture coordinates, and 
so on, and if you are so new to graphics and willing to do a simple compute like image 
processing …pixel shaders are nowhere easy thing to start with- it’s a lot of code especially 
comparing to say RenderScript. There are plenty of libraries to abstract out much of the 
boilerplate code, finally there are full-blown game engines that hides all this things from 
you.
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Of course pixel shaders support was a huge leap step in the programmability and that is 
why we skip the OpenGL versions prior to 2,0 from discussion- even though limited form of 
compute also had been possible with fixed pipeline, by use of multi-texturing and texture 
operations, HW-assisted depth, stencil, even limited atomic ops (via blend ops, etc)

I used the texture fetching shader as an example to stress the fact that compact 
formats (like  10:3:3 or 5:6:5 ) and compression support are intrinsic in GL, which is 
very strong side of OpenGL in general,
*not* available in OpenCL (which is really limited on the image formats and 
supported bindings for a texture to be shareable).
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As you very well know, the OpenGL ES 2.0 is defined relative to the OpenGL 2.0 
specification. 

In turn OpenGL ES 3.0 is derived from the OpenGL 3.3 specification (and roughly matches 
DirectX9)
There are multiple enhancements there like support for multiple render targets 
and standard texture compression
But from the compute persp the primary addition for GLSL ES 3.0 is full support for 32bit 
integer and floating point types and operations. Previously only lower precisions were 
supported.

Notice how for 3.0 vendors are now doing much better job with catch up of the new 
standard comparing more than 2-3 year lag for GLES 2.0 ,
Also notice shorter cadence for recent GLES spec releases (which is general trend of shifting
left, already seen for other compute APIs
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Overdraw which is common graphics perf pitfall occurs when the GPU draws over the same 
pixel multiple times. Unfortunately things like depth testing back face culling or drawing in 
the specific order (e.g. front to back order for opaque geometry) are not applicable when 
doing compute with PS

Well there is bunch of perfectly legal optimizations from regular pixel shaders practices.
Saving the BW is most important, as textures consume a large amount of memory 
bandwidth, and might easily stall the shader exectutions .

It may not seem obvious, but any calculation on the texture coordinates (say for fancy 
image processing like twirling the image) result in the dependent texture reads, which 
slows down things especially on the old-fashioned hw.
Finally use low precision which is generally is acceptable for fragment colors for example 
when you process image data.

44



To fully leverage the portability promise of Pixel shaders, you should respect the Hardware 
and spec limits: for example control flow in shaders is generally limited to forward 
branching and to loops where the maximum number of iterations can easily be determined 
at compile time. 

But most fundamental constraint is that you can use pixel shaders for compute, as long as 
the precision is acceptable. 
Unfortunately, for graphics the speed is almost always preferred over the accuracy , thus 
precision is nowhere close to IEEE standard which makes compute of certain functions (like 
some  transcendentals) impossible or just too slow.

And that is why we are moving to the compute shaders next
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The summary is that from compute perspective Pixel Shaders are low-level old-fashioned 
way of harnessing the GPU power for non-graphics work.
It is very limited on the optimizations (and here I again means things like missing notion of 
shared local memory) and scheduling.
BUT: any 2.0-capable GPU out there can run fragment shaders and that really is about every 
device today.
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Now we want arbitrary calculations to be executed by the graphics hardware with minimal 
changes to the GL state machine.

In most respects, a Compute Shader is identical to all other OpenGL shaders, as it has 
access to many of the same data, such as textures, image textures, atomic counters, and so 
on. 
Yet compute shaders operate differently from other shader stages: CS don't have a pre-
defined output, but only output things by writing data images, storage buffers or atomic 
counters.
Finally, Compute shaders are not part of a rendering pipeline and the visible side effects are 
again through actions on shader storage buffers, image textures and so on.
Well to be fair, the rendering itself is also no longer really a pipeline, with things like 
transform feedback it is more like the Shenzhen subway map!
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Conceptually compute shaders are very similar to OpenCL, but the upside is that you use 
the same GLSL language, something that all OpenGL programmers should be already 
familiar with .

Again, compute shaders have access to the same data as for example pixel shaders plus the 
Shader Storage Buffer Objects  - a new feature introduced along with compute shaders to 
allow flexible and arbitrary structured inputs and outputs for compute shaders (well 
beyond simple integer buffer from this example).
There are still graphics specifics like layouts like buffers binding and additional alignment 
layout options

Notice that shader needs to declare the number of work-items in a work-group in a special 
GLSL layout statement, whilst in OpenCL it is typically specified via host APIs.
The built-in variables that uniquely identify this particular invocation of the compute shader
among all invocations of this compute dispatch call are the same to OpenCL.

(You can use the empty brackets, but only on the last element of the buffer)
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It is quite natural to compare GLES compute to OpenCL from host API level persp as well: 
For example compute shaders use the same context as does the OpenGL rendering 
pipeline. 
Now comparing to OpenGL the OpenCL setup is quite cumbersome with things like queries 
for platforms, devices, creating contexts and explicit queues.. There is nothing like this in 
OpenGL. 
And recall that OpenCL typically requires installing a separate driver and separate libraries.  
While compute Shaders are just there as part of the OpenGL.

The rest of APIs quite similar –like kernel and other general resource management. 

For kernel dispatching, the interesting OpenGL compute goodie is DispatchComputeIndirect
- the execution parameters for the next shader can be written to a buffer from within 
previous shader. No need to go back to host. 
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There are some applications, such as image convolution, where threads within a workgroup 
can share a bulk of data. There is a way to use a shared array that all of the threads in the 
work-group can access.  All this is the same as OpenCL “local” memory
Shared variable access uses the rules for incoherent memory access. This means that the 
user must perform certain synchronization (like general group barriers or dedicated 
memoryBarrierShared() ). 

There is usual set of mem barriers to make sure the corresponding memory 
accesses (e.g. resulting from the use of images/buffers/etc) are completed. While 
all sorts of memory barriers just synchronize the memory, they do not prevent 
the execution of the threads to cross the barriers.  So it is the barrier()​ function 
specific to compute shaders so work group will not proceed until all invocations 
have reach this barrier. 

Notice that just like with OpenCL barriers the barrier()​ can be called from flow-control, but 
it can only be called from dynamically uniform flow control. 
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So far we have dispatched the job for compute. Now if we want for example  to render the 
results on a screen we need to make sure the compute shader will finish the job before the 
actual draw command starts using the VBO buffer updated by the compute shader. 

So you define a barrier ordering the commands. The tricky portion is that your have to 
specify the flag that describes how you intend to USE the data altered by CS.
So in this particular example we specify that the data will be used for vertex drawing after 
compute.

The summary is that you need to remember that all jobs are submitted and executed on 
the GPU in parallel.
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Even though the official Khronos list of devices is solid, unfortunately we don’t have so
large list of actual products.
No doubt we’ll hear more about this in the coming months.

My experience is that latest GLES with compute shaders driver quality is far less consistent 
across vendors compared to even OpenCL. 
It is entirely possible to run into frustrating driver bugs.  From this perspective the OpenCL 
and GLES pixel shaders are by far more robust. 

Also no official benchmarks for compute shaders in the mobile space  yet, just fragmented 
samples, and Rightware just recently launched the Basemark but it is for GLES ES 3.0 only.
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Compute Shaders basically matches the capabilities and general level of tuning available
with OpenCL, expcept that the Shaders support GPUs only.
As we agreed on the pure technical discussion in the beginning I would leave the actual 
industry adoption and general marketing things aside, that is why I still consider Compute 
Shaders to be portable solution for GPU-only compute.
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Now the final summary.
It’s a lot of data you can always study offline, so here I will give you just few example on 
how to interpret this
1) Only RS and OCL support devices other than GPUs, but just OpenCL allows to explicitly 

schedule things, while RS relies on the automatic runtime scheduler 
2) Only OpenCL has no first-class OS support, which is it’s main downside, often limiting 

the support and adoption in mobile
3) Neither RenderScript nor Metal are fully portable across OSs, while both OpenCL and 

Pixel (but not the Compute) Shaders (yet) run on all the major OSs
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I wouldn’t open a rat hole here with the discussion why specific hardware or OS vendors 
are supporting or not any particular API.
At least it is clear that there is no any era of consolidation ahead of us.

So solely from the technical point of view I see just few recommendations from myself 
(Don’t take them too literally ):
if your app is not already using OpenGL, you are probably better off choosing another API 
for compute scenarios. Similarly DirectCompute is best used with the graphics pipeline on 
Windows*. BTW Microsoft’s AMP is built on top of DirectCompute, it is the certified 
compute API for Windows Store Applications for windows tablet/phones. 

Also even for games, OpenCL is really great for large bad things like physics engine. OpenCL 
is supported across Windows Desktop, Android, Linux and MacOSX (tat we didn’t disucss). 
OpenCL* is best used for writing portable code across the 4 operating systems for visual 
computing applications, notice that it is extended with API extensions including 
interoperability with graphics and media. 

For image-processing effects even regular pixel shaders may suffice, and this approach does 
offers one benefit over all the main approaches here- ubiquity. 
If you do a lot of processing with CPU and just seek for a speedup - Look at RenderScript* 
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(Metal* for iOS)
Also look into domain-specific libs like OpenCV*, that offers transparent acceleration for many 
cases

What about Intel
Intel opens it’s SoC for programmers to maximize the application performance by using the 
right device for the task in hand. Our vision for Heterogeneous Programming is to make the 
platform easier to use by exposing and extending industry standard APIs and programming 
models. To that extent, Intel is supporting standards like Microsoft DirectX, OpenGL, LLVM, 
OpenCL*, OpenCL* SPIR, and Google Renderscript. On top of these models and APIs, Intel 
provides programming tools and libraries that allow easier access to Heterogeneous 
Programming. These tools target Windows, Android and Linux. Intel tools are targeting both 
CPU and Intel Graphics and other processing elements on the SOC
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All the vendors offer plethora of tools for regular GLES vertex and pixel shaders, but not for 
general sort of compute, for which support is still very limited.
for Compute most vendors have just API tracing and timeline, and no deep HW counters. 

And while  timeline (API-level) analysis is indeed pretty-vendor agnostic (recall the glTracer
in Android), actual HW counters that are critical for kernels optimizations are entirely 
vendor-specific and require proprietary tools that are very different in look and feel.
That is why let’s consider common application level techniques first- these are most 
portable.

(You have lot’s of info about various GL states, EGL stats and vertex/fragments dynamic 
counters like number of pixel processed or time spent in the vertex shader, but compute-
related metrics are pretty scarce (e.g. GPU busy, shaders busy, and memory stats). )

59



Three things to avoid
Avoid extensive synchronizations with host code and avoid redundant memory transfers 
between host and device, or between APIs.
Also there is a common pitfall of implementing home-baked routine for already well-
defined tasks, for example data conversions routines, or again on interoperability topics.

The entire list is inspired by OpenCL btw (so I omitted OpenCL tips in the corresponding 
section)
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Here I listed few API-agnostic optimizations for kernels:

There is general question on how to access the memory in compute: for example SSBO 
which are the same to buffers in OpenCL versus images and texures.
For read-only path the textures often serve better, as backed by HW texture caches .
The primary difference is that images always have fixed layout. Buffers, in contrast are don't 
really have any element definition at all. 

Another thing is that buffers always use linear memory, while images/textures usually rely 
on some tiling to accommodate 2D spatial coherency of access.
So there can be a large difference in performance, but most general recommendation 
backed by many vendors is to prefer SSBO in OpenGL and buffers in OpenCL over true 
images/texture.

Most vendors advocate vector data types, so follow this receipt especially when vectors are 
natural data types for the algorithm (like uchar4 for RGBA)

Always try NULL for local size in OpenCL (some GPUs would fail for other otherwise)
And of course try to trade off precision and speed`
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Few acknowledgements and we are done
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1) In this kernel example the run() function is called from the device side code. It simply 
triggers an actual compute launch. 

2) The first parameter is the script to be launched - the root function of this script will be 
invoked for each element in the allocation. The second and third parameters are the 
input and output data allocations.

3) This allows dynamic parallelism and defining pretty advanced logic to run on the device 
side without any host intervention.

Always keep in mind that by default, forEach in RS is executing the kernel for each individual 
item in the allocation (i.e. pixel)…

71



1)Similarly to the prev foil we have the function that actually triggers compute launch. Here 
we use additional parameters to change the launch options for the script
2)this is also possible from host APIs
3)There is always hints to runtime on the efficient access pattern 

…But if you want  code working on a single row or column instead of an element, you 
would need to use fake allocation and to define the actual input/output allocations as 
script globals instead.
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One notable feature of OCL 1.2 is support for custom device that typically warp some fixed 
function HW, plus built-in kernels that are similar to RS intrinsics, for example intel offers 
VME this way. Alos notice improved images (that are OpenCL parlance for textures) support
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Few words on OCL 2.0
SVM- ability to use regular app-allocated mem in the kernels, the next step in simplifying 
the porting to OpenCL, as you can keep pointers-based structures like linked list the same 
on the CPU and GPU.
SVM is also about granularity and coherences of sharing between host and OCL devices, 
hence atomics in this list

Kernels from kernels  for dynamic parallelism entirely on a device and Pipes: (ordered data 
flow between kernels, write/read endpoints for producer-consumer) – are both new
execution features.
And finally the improved image (which is OpenCL lingo for textures)…

Also:
Program scope variables in global address space
Generic address space (no need to have local*/global* versions for user funcs in kernels)
Clang blocks ( functions that are “local” to other functions, accessing the stack variables)
3D image writes are a core feature
Support for 2D image from buffer
Images with the read_write qualifier
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There are many approaches to handling multiple devices in OpenCL, well beyond general a 
context per device way.
You can make multiple devices to share the same context, and most OpenCL objects will be 
shared between devices as well. 

As usual there are many caveats here, for example the memory objs must be explicitly 
written to a device before being used. And if you transfer between devices, an intermediate 
host copy may be required (in OCL 1.2 use clEnqueueMigrateMemObjects)

Shared context does not imply any “shared queue”. The OpenCL specification requires you 
to create a separate queue per device and there a lot of associated complexity to 
orchestrate the work. It is worth to mention that all OpenCL API calls are thread-safe 
(except clSetKernelArg) starting OCL 1.2

Also keep a kernel source same for the devices, use preprocessor to accommodate CPU or 
GPU specifics.
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