M

Vol.1, No. 3: 16

Fast, Low Memory Z-Buffering when
Performing Medium-Quality Rendering

Eric Haines
3D/EYE Inc.

Steven Worley
Worley Laboratories

Abstract. This article presents algorithms which both improve performance and
decrease memory costs when using a Z-buffer for medium-quality rendering. The
crux of the method is to perform rendering in two passes; the first quickly renders
only Z-depth values, the second does all shading calculations. This method allows
the reuse of memory used to store the Z-depths and colors, as only one of these
two values is needed at any given moment for any given pixel. It also eliminates all
unnecessary shading/shadowing/texturing calls, which typically take the majority
of computation time in medium-quality algorithms.

Medium-quality rendering is easiest to define by stating what we consider
low and high quality. Low quality is simply using Gouraud interpolated poly-
gons, where the shade is computed at the vertices; this type of rendering is
extremely rapid and has been migrating for years into special purpose hard-
ware on many platforms. High quality includes subpixel algorithms such as
the A-buffer [Carpenter 84] and antialiased ray tracing, where more than one
sample per pixel is generated. Medium quality is, then, where the shading
computation is a significant part of the process and only one sample per pixel
is generated. By this definition the accumulation buffer algorithm [Haeberli,
Akeley 90] is a medium-quality rendering method, since each separate pass
uses a single sample per pixel.

© AK Peters, Ltd.
1 1086-7651/96 $0.50 per page

2 journal of graphics tools
1. Saving Time

The major expense of medium-quality Z-buffering is the shading calculation
itself. This calculation can include texture evaluation, shadow computation,
local shading, and ray tracing for reflections and refractions. This computa-
tion is wasted when a pixel color is carefully evaluated, only to be overwritten
by a subsequent polygon. This cost is a well-documented problem [Watt,
Watt 92], but surprisingly we have not found our solution in any text. We
suspect others have independently discovered and used this method for years;
we present it here for the benefit of everyone else.

The solution is simple: render the scene once into the Z-buffer, performing
no shading, then render the scene again, shading only at pixels where the
surface is known to be visible. The first pass fills the Z-buffer with the depths
of the closest objects. When the second pass is performed, no pixels are shaded
which are not the closest, i.e., only visible surfaces are shaded. The additional
cost of this method is that the scene database is traversed and Z-depths are
computed twice. However, the expense of computing Z-depths of pixels (often
with a tight loop using only integer additions and compares) is usually trivial
compared to the expense of texturing, shading, shadowing, and recursive ray
calls.

The two-pass method attempts to minimize the wasted pixel computation
at the expense of an extra (nonshaded) traversal. The major factor that
determines the savings of this technique is the average depth complexity of the
scene. As more surfaces overlap, the efficiency increases. Note the similarity
of this algorithm to pure ray tracing, in which the first goal is to find the
closest object along a ray, then the shade of this closest object is computed.

One of the advantages of this algorithm is that it is simple to implement. A
Z-buffer renderer already has all of the code; make a simple Z-only renderer
and add this extra rendering pass and we are done. In fact, a Z-only renderer
may already exist, as it may be used for shadow buffer creation.

There are a few details that should be noted. The computation of the
7-depths must be absolutely identical for both passes, otherwise the second
(rendering) pass will not shade the pixels where the Z-depths do not agree.
The second pass essentially looks for when the Z-depth matches, which does
mean that once in a great while a pixel’s shade will be computed twice because
two polygons are at the same depth (as it turns out, such minor waste is
eliminated by the memory-saving scheme described later in this article).

Transparency is another issue which must be considered. A pixel where
transparency occurs by definition has a few different objects affecting the
shade. For a hybrid renderer which uses ray tracing for refraction there is no
problem, since a ray is traced to compute the effect. Similarly, a transparency
scheme in which the transparent object is rendered by shading, say, alternating
pixels in a checkerboard pattern, avoids the problem since only one object is

ittt s rpe

Haines and Worley: Fast, Low Memory Z-Buffering 3

stored at each pixel. For other algorithms other solutions are necessary, e.g.,
the Z-depth of only opaque objects might be stored.

It is worth noting that this basic algorithm can be used selectively. If the
object is deemed sufficiently simple, it can be fully rendered into the color and
Z-bufler in the first pass; if it is more complex, it is rendered in two passes.

2. Saving Memory

Given this two-pass method, there is a way to halve the standard memory costs
for image computation. Normally separate color and Z-buffers are allocated.
Using this new scheme only one buffer is allocated and reused for both types
of data. This process is done by reducing the range of Z-depths slightly,
allowing some bits to flag whether the memory stores a color or a Z-depth.
Additionally we can identify which pixels show the background, for use in
assembling a transparency bit for compositing. Separate bit arrays could be
used instead [Libes 93], but our scheme results in less time spent in IMemory
access.

One example of this technique assumes a 32-bit, fixed-point (integer) Z-
buffer. Traditionally, the range of depths will range over the full values (in hex)
from 00000000 to FFFFFFFF. However, in the reuse scheme, we will “reserve”
the bottom end of this range, along with the highest value, and map the depths
from 01000000 to FFFFFFFE. Note that this is a reduction of the Z-range
of well less than 1 percent (i.e., only about 1/256) so the resolution of the
Z-buffer is barely affected.

Initialize each Z-value to FFFFFFFF for the first pass, which computes
only Z-depths. As in a normal Z-buffer, we scan convert geometry into the
buffer, replacing a Z-value in the buffer with the geometry’s if the geometry
is closer. After this first pass is complete, we have a depth map of the scene,
with the background buffer values still set at FFFFFFFF,

Now we traverse the geometry again, scan converting it a second time. If
the geometry’s depth matches the stored depth, compute the proper color for
that pixel, including any texturing, shading, shadows, etc., which will result
in an RGB color. Now store that RGB color in the buffer by concatenating
the value “00” with the R, G, and B byte values to produce a 32-bit value.
Store this value into the Z-buffer. Since no object will have a Z-depth less
or equal to 00OFFFFFF (the “maximum” color value), this pixel will never be
overwritten by subsequent geometry.

After the second pass is complete, the buffer can be examined for pixels
which contain FFFFFFFF, as these are background pixels. The background
pixels’ colors can then be computed and stored in the buffer. At this point
the first byte is otherwise unused (all Z-depth comparisons have been done),
so we could leave it as “FF” to denote that it is a background pixel.

4 journal of graphics tools

When the rendering process is complete, the buffer contains the proper
color values for each pixel, stored as the second through fourth bytes in each
32-bit buffer value. The transparency flag is stored in the first byte, with FF
for background and 00 for foreground.

3. Storage of Higher Quality Colors

A higher quality renderer may require a better color representation than a
single byte for R, G, and B. One solution would be to store the color values
in a nonlinear form which still uses only 24 bits, as in [Schlick 94]. However,
the ability to use even more bits to represent each color will obviously help.
More bits per pixel is one option; another possibility is a floating point color
representation such as in [Ward 91].

A 32-bit Z-value is enormously precise; the rendering of a large room with
a far clipping plane of 10 meters implies the Z-buffer values are accurate to
approximately 1 angstrom (10719 meters), comparable to the diameter of an
atom. This result implies that it is quite safe to use less than a full 32 bits of
precision. [Lathrop et al. 90]

A simple scheme allowing greater color precision storage is to steal a high
bit from the Z-buffer and use it as a flag bit. Setting this flag bit when
initializing the Z-buffer, and shading only when this flag bit is set, allows
full memory reuse. This flag bit is cleared when the pixel is shaded. This
algorithm provides 31 bits for color storage, allowing colors of 10+ bits per
channel, or with a 7-bit exponent for Ward’s color storage method. Any pixel
with the high bit set after both passes is a background pixel.

4. Summary

By performing two passes when doing per pixel shading, wasted shading com-
putation can be avoided. The Z-buffer can also be reused to store the final
pixel colors, saving significant memory.

References

[Carpenter 84] L. C. Carpenter. “The A-buffer, An Antialiased Hidden Surface
Method.” Computer Graphics, Proc. SIGGRAPH 84, 18(3):103-108(1984).

[Haeberli, Akeley 90] Paul Haeberli and Kurt Akeley. “The Accumulation Buffer:
Hardware Support for High-Quality Rendering.” Computer Graphics, Proc.
SIGGRAPH ’90, 24(4):309-318(1990).

Haines and Worley: Fast, Low Memory Z-Buffering 5

[Lathrop et al. 90] Olin Lathrop, David Kirk, and Doug Voorhies. “Accurate Ren-
dering by Subpixel Addressing.” IEEE Computer Graphics and Applications,
10(5):45-53(September 1990).

[Libes 93] Don Libes. Obfuscated C' and Other Mysteries, pp. 25-29. New York:
John Wiley & Sons, 1993.

[Schlick 94] Christophe Schlick. “High Dynamic Range Pixels.” In Graphics Gems
1V, edited by P. Heckbert, pp. 422-429. Boston: Academic Press, 1994.

[Ward 91] Greg Ward. “Real Pixels.” In Graphics Gems II, edited by J. Arvo, pp.
80-83. Boston: Academic Press, 1991.

[Watt, Watt 92] Alan Watt and Mark Watt. Advanced Animation and Rendering
Techniques, p.22. Reading, MA: Addison-Wesley, 1989.

‘Web Information:
Eric Haines, 3D/EYE Inc., 1050 Craft Road, Ithaca, NY 14850 (erich@acm.org)
Steven Worley, 405 El Camino Real, Suite 121, Menlo Park, CA 94025

(steve@worley.com)

Received April 19, 1996; accepted November 11, 1996

