Eric Haines
NVIDIA

On a CPU it took a few minutes at 1920x1080 with 2048 paths per pixel of maximum depth
SiX.

On a GPU with some denoising and a reduced path count it can render in a few
milliseconds, for 10 fps interaction at about this quality.

If we drop to one path per pixel, then hits about 5 fps on CPU and 120 Hz on a GPU.

Rays from the eye

Camera

NiG

Image
8 Light Source

Shadow Ray

Rays for shadows
date back to
Appel in 1968

Source: Ray Tracing Gems

1980: Classical Ray Tracing

Graphics and 1.D. Foley
Image Processing Editor
An Improved

Illumination Model for
Shaded Display

Turner Whitted
Bell Laboratories
Holmdel, New Jersey

To ly render a dis lonal image of &

1 sceme,
that affects the intensity of each pixel of the image
must be known at the time the inteasity is calculated.

In & comnlified form thic lnformation le ctared In o tree

Iz 3 slonplified form, this lnformation ls stored In o tree
of “rays” extending from the viewer to the first surface
encountered and from there 1o other surfaces and to
the light sources. A visible surface algorithm creates
this tree for each pixel of the display and passes it to
the shader. The shader then traverses the tree to
determine the intensity of the light received by the
viewer. Consideration of all of these factors allows the
shader to accurately simulate true reflection, shadows,
and refraction, as well as the effects simulated by
conventional shaders. Anti-aliasing i included as an
integral part of the visibility calculations. Surfaces
displayed include curved as well as polygonal surfaces.

Image now generated in real time in NVIDIA OptiX™ (was 74 minutes per frame in 1980)

He even talks about previous ray tracing algorithms, such as MAGI and Arthur Appel 1968.
Douglas Kay in 1979, "TRANSPARENCY FOR COMPUTER SYNTHESIZED IMAGES”, almost did
it.

1980: Classical Ray Tracing

For each pixel
* Send ray from eye into scene
* Send aray from the intersection to each light: shadows

* Spawn a new color ray for each reflection & refraction

highly polished surface

Generated using OptiX sample “optixWhitted”

74 minutes on a VAX-11/780, 640 x 480

>
<
L

DVQ

Classical Ray
Tracing L

My own, started from Pete’s “1-Overview” intro to RT course slide

\ shadow
a ray

Classical Ray \
Tracing L x

My own, started from Pete’s “1-Overview” intro to RT course slide

\ shadow
a ray

Classical Ray = \
Tracing L x

My own, started from Pete’s “1-Overview” intro to RT course slide

Classical Ray
Tracing -~

My own, started from Pete’s “1-Overview” intro to RT course slide

Classical Ray
Tracing -~

My own, started from Pete’s “1-Overview” intro to RT course slide

Classical Ray | |
Tracing -

My own, started from Pete’s “1-Overview” intro to RT course slide

1984: Cook Stochastic (“Distribution”) Ray Tracing

Allow shadow rays to go to a random point on area
light.

Allow specular rays to be perturbed specularly around
the ideal reflection.

Shoot sometime during the frame for motion blur.

glossy surface

By Robert L. Cook, Tom Porter, and Loren Carpenter, Pixar

https://graphics.pixar.com/library/indexAuthorRobert L Cook.html

https://graphics.pixar.com/library/DistributedRayTracing/

Source: ACM, though better to credit Pixar (rights assignment has changed over the
decades), SIGGRAPH 2019 OptiX course.pptx uses this image.

Stochastic
Ray Tracing

Stochastic
Ray Tracing

Stochastic
Ray Tracing

1986: Kajiya-Style Diffuse Interreflection

A

Path tracing: shoot each ray and follow it along a
series of interreflections.

“The Rendering Equation”

Guaranteed to give the right answer at the limit.

N

diffuse surface reflection

S AR

By James Kajiya, California Institute of Technology

Note recursion: ray continues along a path until a light is hit (or something entirely black or
considered “unchangeable,” such as an environment map.

Source: ACM, or Caltech.

Path Tracing

pixel samples \

\

/IW,\ ’\‘—‘/‘ \Seconda ry ray
A4

o “\ =4S ; Primary ray \

Path Tracing

pixel samples

diffuse

\ box

Path Tracing

diffuse

Path Tracing

diffuse
box

Path Tracing

diffuse
box

Path Tracing

diffuse
box

Path Tracing

pixel samples \
6 /—\\ N
o ol
- -
® diffuse
Use all paths’
contributions box

My own, started from

Why Ray Tracing is Great

1/ typede!f struct{dcuble X,y,z}vec;vec U,black,amb={.02,.02,.02);struct sphere{
, vac cer,color;doible rad,kd, ks, kt,kl,ir}*s, *best,sph(])=(0.,6.,.5,1.,1.,1.,.9,
T 405,42,.85,0.,1.7,9.,8,,745, 1. 5% .2 1., «7,.3,0.,.05,1.2,1.,8.,-.5,.1,.8, .8,
1.543,47,0.,0.51 €.,15.,1.,.8,1.,7.,0.,0.,0.,.6,1.5,-3.,-3.,12.,.8,1.,
14s54,0.,0.,0% S5, }:yxidouble u,d,tnip, .'-:j}lm() ,ten() ;double vdot (A,B)vec A
,B;{return A.x*3.xiA.y*B.y+A.2*B.2;}vec vcenb (a,A,B)dguble a;vec A,B;{B.x+=a*
A.x;B.y+=a*A.y;B.z+=a*A.z;return B;)vec vunit (A)vec A;{return vcomb(l./sqrt(
vdot (A,A)) ,A,black) ; }struct sphere*intersect (P,D)vec P,D;{best=0;tmin=1e30;s=
sph+5;while (s-~>sph)b=vdct (D, U= vcork (-1.,P, s->cen)) ,u=b*b-vdoc (U, Uphs->rad*s
->:ad,u=u>0?sqrt (a) :1e31.u=b-u>le-7?b-urb+u, tmin-u>-lo-‘luuo.n,s:-.?bo-‘t-s,u:
tmin;return Lest;}vec trace(lev¥l,P,D)vec P,D;{dcuble~d, eta, eiVec Nyeolor;
struct sphere*s,*l;if(!level--)return black;if(s=intersect (P,D)) ;else return
amb;color=amb;eta=s->ir;d= -vdot (D,N=vunit (vcomb (-1.,P=vcomb (tmin,D,P), s->cen
))) s1if (d<O)N=vcc~b(-1. :‘!\‘,black) ,eta=1/eta,d= -d;l=sgh45:wh (1==>sph) if ((e=1
.=>k1l*vdot 2N, C=vunit (vegab (-1.,P, 1->cen)))) >0&4intersect (P, Uy==<1) color=vcomb (e
. 1->coleruzolor) ;Y=s->Color;color.x*=U.x;colc . y*=Uiy;color.z*=U.2;e=1-eta*
eta* (1-d*d) ;return vcomb (s->kt,e>0?trace(level,P, vcorb (eta,D, vcomb (eta*d-sqrt
(e),N,black))) :black, vcomb (s->ks, trace (level, P, vcomb (2*d, N, D) } , vcomd (s->kd,
celor, veomb (s->k1,U, blasH))) :Jn_a‘m (!L(pzint! ("%d %d\n",32;32) swhil x<32*32)
U.x=yx%32-32/2,U.2=32 ,”44/32,0.#32/1&*!11(25/11‘.5,1 261), U= b (255.,
trace(3,black, vunit (U)),black),printf("$.0f %08 v.otsn“,k'j:)/'pixarlﬁ/

The back of Paul Heckbert’s business card, 1607 bytes. Includes tricks from
Darwyn Peachey and Joe Cychosz

From 1987, seminal paper being Ray Tracing Jell-O Brand Gelatin

23

The Result

Original 32x32 image

My high-res version: shows shadows & refractions

From 1987, seminal paper being Ray Tracing Jell-O Brand Gelatin

http://www.cs.cmu.edu/~ph/ for code, etc.

Highlights, shadows, and refraction. 1024x1024 took 10 seconds to run on my CPU.

24

Another Busi

typedef int i;typedef float f;struct v{
f x, .

{return
{return
tor™ (v

ness Card

Andrew Kensler’s 1337
byte program.

For example, spheres
are stored here:
G[]={247570,280596,280
600,249748,18578,1857
7,231184,16,16};

http://eastfarthing.com/blog/2016-01-12-card/

https://fabiensanglard.net/rayTracing_back_of business_card/

and https://gist.github.com/sungiant/9524044

25

Which One Is Real?

Left image is a photograph, right image is rendered by path tracing. This famous ground-
truth test of a renderer is the origin of the “Cornell box” 3D models—there’s a real box at
Cornell.

26

Hard Shadows

So, how are these shadows generated?

Hard Shadows

If you can’t see the light, you’re in shadow. Another way to think of it is, if you look from
the light’s location, whatever you see is lit, everything else is in shadow.

28

Soft Shadows

—

What about these shadows?

Soft Shadows

Interreflection
a.k.a.

indirect lighting
a.k.a.

color bleeding
a.k.a.

global
illumination

e

Interreflection
a.k.a.

indirect lighting
a.k.a.

color bleeding
a.k.a.

global
illumination

e

Glossy Reflections

Glossy Reflections

Glossiness can vary, even using textures to control glossiness on different parts of the
surface.

35

Here’s your quiz question: which of these effects can be seen in this image?

36

R
By

Interreflection £R{

hroughout

B (1111

'.

Soft Shadows

37

From Chris Wyman, of a scene free to reuse (Bistro outdoors, from ORCA
collection).

38

Ambient Occlusion

From Chris Wyman, of a scene free to reuse (Bistro outdoors, from ORCA
collection).

39

Ambient Occlusion

From Chris Wyman, of a scene free to reuse (Bistro outdoors, from ORCA
collection).

40

Depth of Field,
» Background Blur

\//

From Gauvriil Klimov at NVIDIA

41

From Gauvriil Klimov at NVIDIA

Depth of Field,
Foreground Blur

42

From Gauvriil Klimov at NVIDIA

Motion Blur

43

.
.

¥ Hollow Mountain build by regloh in
Vokselia, rendered with Chunky

From vokselia.com, built by regloh of the Voxelians, rendered with Chunky —path trace

44

From Ray-Guided Volumetric Water Caustics in Single Scattering Media with DXR, NVIDIA.
Ray Tracing Gems, http://raytracinggems.com

Most dangerous effect for last, and not because of the octopus here.

45

Caustics

From Ray-Guided Volumetric Water Caustics in Single Scattering Media with DXR, NVIDIA.
Ray Tracing Gems, http://raytracinggems.com

46

Glass Caustics

Images courtesy Matt Pharr, Wenzel Jakob, and Greg Humphreys. Glass model by Simon Wendsche.

The Dangers of Ray Tracing

Not a render with a bad composited outside image, but reality. Let’s look closer...

48

The Dangers of Ray Tracing

Oh, that can’t be good. Beware! Reality can burn you, literally.

49

The Dangers of Ray Tracing

Briefly exposed to the sun

50

Embarrassingly Parallel

Image from Wikimedia Commons, File:UNM - Dreamstyle Stadium panorama.jpg

https://blogs.nvidia.com/blog/2018/08/01/ray-tracing-global-illumination-turner-whitted/
- includes the Compleat Angler film

https://commons.wikimedia.org/wiki/File:UNM - Dreamstyle Stadium panorama.jpg

51

End of the Line

Moore’s Law Is Ending (Really!)
Amdahl's Law (357

»2X /6 .
100,000 (12%0yr)

End of Dennard Scaling
(=] » Multicore 2X / 3.5 yrs.
ﬁ (23%/yr.)
! 10,000
—
3
> 1,000 RISC 2X / 1.5 yrs.
. (52%/yr.)
wv
>
o
c 100
(1}
£
1.
Lo
= 10
6] CISC 2X / 2.5 yrs.
a (22%/yr.)

1980 1985 1990 1995 2000 2005 2010 2015

Figure after Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, “A Domain-Specific Architecture for Deep Neural Networks,”
Communications of the ACM, September 2018, Vol. 61 No. 9, Pages 50-59.

“performance on standard processor benchmarks will not double before 2038”

Moore’s Law is Ending (Really!)

GPU Computing

/ 1.1Xper year

o0 ®
CPU Performance

(]
°o® 1.5X per year

[N}
Single-threaded perf

1980 1990 2000 2010 2020

Original data up to the year 2010 collected and plotted
by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun,
L. Hammond, and C. Batten

New plot and data collected for 2010-2015 by K. Rupp

Jensen’s version from Kevin Acocella

More Special-Purpose Hardware

e
 TENSOR CORE
125 TFLOPS FP16 10 Giga Rays/Sec

250 TOPS INT8
500 TOPS INT4

S T

RT CORE

SHADER | COMPUTE

13 TFLOPS FP32
50 TOPS INT8 SHADER | COMPUTE

16 TFLOPS # 16 TIPS

PASCAL

NEW RT CORE NEWTENSOR CORE

NEWSHADER

238 Tensor-TFLOPS

[
a
(=]
-
w
0
[
-4
©
n

ader-TFLOPS

55

GPU Memory Capacity in Gigabytes

512

0.125
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Products referenced include NVIDIA® Quadro® GPUs; NVIDIA DGX ™ and DGX Station™; and NVIDIA NVLink ™

4K: 3840 x 2160 pixels takes 33 MB (including alpha) — means 30 images is 1 GB

Rasterization and Ray Tracing

Draw — Vertex — — Pixel — Rendery
. . N Output Unit
Call — Shading — — Shading — ROP
— —_—

J Iy | ‘
—_— —_— —_—

Ray . — s Traversal & — — Shadi

] . ading
Generation — — Intersection — —

Comparing graphics and ray tracing pipeline

Gray = fixed-function / hardware. Improves over time.

Diamond = some kind of scheduling happening

White = programmable

<click>

Optix (and DXR and soon Vulkan) does Scheduling & Traversal, Intersection.
Ray generation and shading is the developers responsibility.

Workflow is often recursive, shaders can trace rays.

IA = input assembler

Rasterization and Ray Tracing

Draw — Vertex — — Pixel — Render
_— Output Unit
CaII Shadlng Shading ROP

E— —

Ray — Traversal & _

Generation — Intersection E—
—_—

- | Shading
This is performed by NVIDIA RTX“‘

Comparing graphics and ray tracing pipeline

Gray = fixed-function / hardware. Improves over time.

Diamond = some kind of scheduling happening

White = programmable

<click>

Optix (and DXR and soon Vulkan) does Scheduling & Traversal, Intersection.
Ray generation and shading is the developers responsibility.

Workflow is often recursive, shaders can trace rays.

IA = input assembler

The Bounding Volume Hierarchy (BVH)

This scheme mostiy won the efficiency data structure wars.

-\
. (", root
internal nodes "\ _'

Traversing a BVH (i.e., tracing a ray) is typically O(log N). Image courtesy of
Real-Time Rendering

Nested grids do see use for voxel/volume rendering, and k-d trees for point clouds

Source: Real-Time Rendering (Eric coauthored, made figure)

BVH Aigorithm

- —

AAAAAAL A

Quick refresher on how RT tackles the scene representation problem.

10 box tests + 10 triangle tests vs 1000 triangle tests.
BVH not a new idea. Been around for decades. But devil is in the details if you want it
really fast. Lots of research around that, both construction and traversal, from NV and

many others.

Source: Steve Parker’s HPG 2019 talk

60

RT Cores

RT Cores perform:

« Ray-bounding volume

hierarchy (BVH) traversal
« Ray-triangle intersection
« Instancing: 1 level

Return to shaders for:

o Multi-level instancing
« Custom intersection
« Shading

SM — streaming multiprocessor

61

Five Types of Ray Tracing Shaders

Ray-tracing pipeline split into five shaders:

* Ray generation shader

Intersection shader(s)
Miss shader(s)
Closest-hit shader(s)
Any-hit shader(s)

define how to start tracing rays

define how rays intersect geometry
shading for when rays miss geometry
shading at the intersection point

run once per hit (e.qg., for transparency)

From Chris Wyman’s introduction to ray tracing SIGGRAPH 2019 notes

62

Five Types of Ray Tracing Shaders

Ray-tracing pipeline split into five shaders:

* Ray generation shader
* Intersection shader(s)
* Miss shader(s)
* Closest-hit shader(s) «— Controls per-ray behavior (often many types)
* Any-hit shader(s)

From Chris Wyman’s introduction to ray tracing SIGGRAPH 2019 notes

63

How Do These Fit Together?

64

How Do These Fit Together? [LOGICAL Version]

* Loop during ray tracing, test hits untii there are no more; then shade.

-

TraceRay() MM Acceleration Done with traversal?

~

Called Traversal
Test object found

Intersection

Shader

\ Traversal Loop

™ Shader Return from
TraceRay()
Miss
Shader

<<

* Closest-hit shader can generate new rays

: reflection, shadow, etc.

65

Any Hit

| Ray Generation I

TraceRay()

Acceleration ¥
Structure

Traversal

http://www.realtimerendering.com/Real-Time_Rendering_4th-Real-Time_Ray_Tracing.pdf

66

_ — . — N - Global lllumination (Gl)
Ray Tracing Techniques

B

Metro Exodus

(S04 |
- Battlefield V. mb.Raider- -

Updated from Steve Parker (HPG 2019) and Chris Wyman (SIGGRAPH 2019 “THE PATH To
PERFORMANCE: SCALING GAME PATH TRACING”). Partners where we worked on the tech.

67

Ray Tracing

for faster baking
as a tool

Interactivity, but also...

for ground truth
>/€))%¢g for other
~4 B (ab)uses

/\
L}
'0/‘4 Iz

Image courtesy of Matt Pharr, Wenzel Jakob, and Greg Humphreys.

Images from three. js sample “webgl_materials_lightmap”

%

Model by Yasutoshi Mori (@MirageYM), available under CC-BY license. Image from “RTX Beyond Ray Tracing” by Wald et al.

http://erich.realtimerendering.com/rtrt/index.html

1987: AT&T Pixel Machine

A ——— e -

AT&T Pixel Machine: interactive,
postage-stamp-sized, ray-traced
mirror sphere atop a mandrill texture.

Sphereflake: 512 x 512 pixels of 7,381
spheres and plane rendered in just 30

seconds, later optimized to 16 seconds
in 1988.

Sphereflake on pixel machine ran in 30 seconds, 16 seconds a year later due to software
tuning. http://www.realtimerendering.com/resources/RTNews/html/rtnews4a.html#art4

Sphereflake is in the Standard Procedural Database program set.

Real-time browser demo here: https://www.shadertoy.com/view/wdtSWf

2018: Turing

Sphereflake:

1920 x 1080 pixeis of
48 million spheres
and plane rendered at
60 FPS, running on an

NVIDIA Titan V card.

Instancing could
improve this further...

https://erich.realtimerendering.com/rtrt/index.html — 31 years later

Soft Shadows, Hemisphere lighting, Depth of Field

All of these were easy
code changes.

https://erich.realtimerendering.com/rtrt/index.html — easier to see the depth of field there

Image by Alexia Rubod

72

The Rendering Equation

Lo(X, o) Fx (@1, o) |6 - A di

Li(X, &)

= Le(X, o) +/
S2

Outgoing light Incoming light Material Lambert

From Morgan McGuire’s “Path Tracing Review” — a pure path trace picks omega_i
randomly in a uniform way.

73

Path-Traced Game: Quake Il

Simple assets and limit path types
Note: Initial implementation is open source, http://brechpunkt.de/q2vkpt/

https://www.nvidia.com/en-us/geforce/campaigns/quake-ll-rtx/

Original: http://brechpunkt.de/g2vkpt/

74

Mirror, Glossy, Diffuse

NN

Mirror reflection Glossy surface

N

Diffuse (matte)

75

Mirror, Glossy, Diffuse with MIS

vAg vAg
< > = >
3 2y

AN

Glossy surface

Mirror reflection

Diffuse (matte)

76

Multiple Importance Sampling

Radius

—

AR

Shininess

Sampling the light source Sampling the BRDF MIS

From Veach and Guibas, Optimally Combining Sampling
Techniques for Monte Carlo Rendering, SIGGRAPH 1995

From Multiple Importance Sampling (MIS) demonstrated by Veach and Guibas in 1995.

Figure 2 permission purchased 12/16/2019 for use in this and derivative presentations.

http://graphics.stanford.edu/papers/combine/

77

5000 spp

Austrian Imperial Crown, modeled by Martin Lubich

Even with Turing, only have a budget of a few rays per pixel in real-time

10 GigaRays/sec: 20 rays/pixel at 4k@60Hz

Less in practice: game doesn’t only do raytracing, scenes are complex, need
shading, etc.

Important to use our rays wisely.
Use rays where they matter most
Hybrid Rendering of key visual effects (reflections, Gl, shadows, AO, ..)
No point in ray tracing primary visibility, the rasterizer is still an efficient
beast we’ve tuned for 25 years, no reason not to use it!

78

Start with a noisy result and reconstruct

Specialized non-graphical data for denoising, like tangents for hairs.

Even films use denoising

https://developer.nvidia.com/gameworks-ray-tracing

Denoised

Tensor cores: evidence that fast denoising (enabled by tensor cores) helps a
lot for ray tracing

From NVIDIA’s “Deep Learning for Rendering” 2018

Deep Learning for Image Denoising

Q.
- W O-0
F O
bt /°0-0
Trained Neural
Network

Training

= Training
Data =

Trained
network
detects
noise and
reconstructs

Rendered

20,000 Training on progression Apply trained

network to noisy
images

training of images
images

Developing an application that benefits from DL is different from traditional
software development, where software engineers must carefully craft lots of source
code to cover every possible input the application may receive.

From NVIDIA’s “Deep Learning for Rendering” 2018

At the core of a DL application, much of that source code is replaced by a neural
network.

To build a DL application, first a data scientist designs, trains and validates a neural
network to perform a specific task.

The task could be anything, like identifying types of vehicles in an image, reading
the speed limit sign as it goes whizzing past, translating English to Chinese, etc.

The trained neural network can then be integrated into a software application that
feeds it new inputs to analyze, or “infer” based on its training.

The application may be deployed as a cloud service, on an embedded platforms, in
an automobiles, or other platforms.

As you would expect, the amount of time and power it takes to complete inference
tasks is one of the most important considerations for DL applications, since this

determines both the quality/value of the user experience and the cost of deploying
the application.

83

1 spp Ray Traced Shadows

Test scene for raytraced shadows. Overcast sky so shadows are soft.
This what it looks like at 1spp without denoising.

84

1 spp Ray Traced Shadows + Denoising

And this is the results of applying our denoisers to 1spp ray traced shadows.

What this does is cleverly re-use and blend the samples from neighbor pixels as well
as previous frames.

So this is a combination of spatial and temporal filtering.

85

Ray Traced Shadow Ground Truth

And this is the ground truth, using hundreds of rays per pixel and no denoising.

We got really close with 1spp denoised!

86

Shadow Mapping

Finally this is what you would get with shadow mapping. There is a bit of peter

panning going on at the feet of the pedestrians, and we also lost the interesting
contact hardening effect for the overcast sun soft shadows.

Not to mention the semi-transparent shadows of the trees that look completely different,
because shadow maps can’t handle transparency well.

87

1 spp Ray Traced Reflections

Let’s look at reflections.

1spp with different roughnesses.

88

1 spp Ray Traced Reflections + Denoising

Denoising for reflections will take into account material parameters such as surface
roughness.

89

Ground Truth

And this is ground truth rendered with thousands of rays per pixel. Got quite close.

90

Stochastic Screen-Space Reflections (SSR) + Reflection Captures

This is what we would get with traditional stochastic SSR combined with reflection
probes.

l.e. this is what a traditional game would look like (I think this is actually stock
UE4).

See all the typical SSR artifacts.

91

1 spp Ray Traced Global Illumination

For example, this is what you would get with pure 1 sample per pixel path traced
indirect diffuse global illumination. As | said before you can notice there is a lot of
pixels that are just black, because they failed to sample a valid light path that
connect the camera to the light source.

92

1 spp Ray Traced Global lllumination + Denoising

Now boom, this is the results of applying our denoisers for Gl. Things are looking
much cleaner now. And if you look closer, the indirect shadows under those pillars
and tables are actually not washed out either.

93

Ground Truth

This is the ground truth image. | think we have matched it pretty closely. It does
still have a bit more details in contact shadow region.

94

/ |
DLSS OFF DLSS DN (QUALITY MODE)
lax : ‘ Maximum, 4K, RTX 60

nvioia

from Death Stranding

Checkerboard upscale using DL for figuring out what is best to “interpolate” (really,
extrapolate)

95

v

DLSS OFF

from Death Stranding

96

Shader

Shader §:
-+

RT Core

Shader
+

RT Core
-+

Tun(fenssein

YOUNGBLOOD

Tensor Core 1 Frame on Turing

| think there’s even more performance and quality to be gained here by software. Not
just tuning, though that is important, but also being clever about sampling and
filtering.

97

ReSTIR + Denoise

[Moreau et al. 2019] ey

No denoising

o

L
]
o
<)
<
7]
(a]
>
£
o
o

98

Reference

Can’t denoise data you don’t have, e.g., the striping around the pole.

99

LeFohn’s Law
The job of the renderer is not to make the picture;

the job of the renderer is to collect enough

samples that the Al can make the picture.

We like coherence for hardware — single instruction multiple data. But that’s a waste.

Drunk loses his wallet in an alley, looks under a streetlight because it’s easier to see.
We need to look everywhere, but sensibly.

So sample N+1 should tell the Al as much as possible that it didn’t already know from
samples [1..N].

101

Enderton’s Coroliary

If your rays are coherent, you're shooting too many rays.
Or:

Cherish your samples

https://smile.amazon.com/Imperator-Scorpion-Gaming-Computer-
Office/dp/BO8HYRNJCH

102

Marbles at GTC

Marbles Now

720p @ 25 fps

1440p @ 30 fps

DLSS for AA (no scaling)

DLSS Upscaling

Recorded on RTX8000 (TU102)
Recorded on A6000 (GA102)
Indirect Gl is on

Indirect Gl is on

No DOF

DOF

1 dome light + 1 indirect light
85+ Lights

103

Marbles RTX
Ampere | 1440p @ 30 fps
Depth of Field

130 Area Lights

What’s Cooking?

Some topics of interest:

(]

Building or modifying an efficient BVH in parallel

* The waving tree problem

Adaptive sampling: where to generate more samples
Caching: what can we reuse efficiently?

* Dynamic Diffuse Global lllumination Resampling

nnnt\:r:nn N I:‘f\ L'\ AAAAA l‘l nl CC‘)
UCHIVDITNE i< yCyvliu vioo.:

Differentiable rendering: DNNs — see arXiv survey

https://arxiv.org/abs/2108.05263

https://arxiv.org/abs/2006.12057

104

“Ti . i ‘
7

#3 :hn q‘; L thh o ﬁ!;t”':: T2 ;l "t ;[l”';”[; |'”'” !; o llll

"""""" =3J7 TJ TTTT g TETIEy T S 2

— David Kirk, March 2008

“Ray tracing is simple enough to fit on a business card,
yet complicated enough to consume an entire career.”

— Steven Parker, May 2019

Can't use this joke any more. Ray tracing is a sea-change, it's like shadow mapping added
to rasterization, times 3. At the same time David was saying this joke, he was starting to
look into how to accelerate ray tracing by using dedicated hardware.

Circa 2008 - http://www.pcper.com/article.php?aid=530 — seems to be the first mention
on the internet, actually

105

Seen at Pax East 201

Rand Miller

Rand Miller is the co-creator of the classic videogame “Myst”

106

Pro-ish Tips on Career

Do that extra thing, about something you enjoy and working on:

Make a website for yourself; sites.google.com if nothing else. Don’t be stuck with your
school’s/work’s URL.

Volunteer at any conference, for any position — help is always needed, and you meet
people. OBS Studio! Some possibles: HPG, 13D, EGSR, SIGGRAPH, etc.

Sincerely ask questions of authors.

Make some Shadertoys!

Blog or write articles on things you know or things you’ve tried. (And consider
http://icgt.org or at least arXiv.org)

Help review papers in an area you know well. Say “yes.”

Work on some (usually public, open source) project you like, in a team or on your own.
Get a different perspective.

Write a book. Make a movie. Create a game. All quite doable!

Pet peeve: requesting to connect on LinkedIn without adding a note.

See my site about why you want a URL: http://www.realtimerendering.com/blog/moving-
targets-and-why-theyre-bad/

People think you know something if you write a book. And, dozens of dollars to be made!

My gosh, never ever randomly ask for a connection to someone on LinkedIn without an
introductory note.

Side effect: writing about something makes you learn it well enough to write about it (and
not look dumb).

At Work

* Ask questions when you don’t know. Get over looking ignorant —
everyone is ignorant about 99.99% of everything.

* Solois fine, failing solo is fine, but failing with others is less likely — get
help. A diverse set of views and skills is a win.

* Please don’t toot your own horn or humblebrag.
* Enjoy the ride!

“We are all experts in our own little niches.” — Alex Trebek

“Let someone else praise you, and not your own mouth; an outsider, and
not your own lips.” — Proverbs 27:2

I’'m not religious, but the old testament nailed it there. Common message ever since. | also
like “Self-praise is no recommendation.”

RAY R
siCc s
TRACING ;:;DIEBI:;I&Y» éé ED

PRINCIPLES OF
DIGITAL IMAGE

SYNTHESIS

X

. v 1 NTRODUCT LI
RAY TRACING “ ¥ . e

IN ONE WEEKEND

TRACING

See http://www.realtimerendering.com/raytracing.html#books

109

Find these and more here:

http://bit.ly/rtrtinfo and http://raytracinggems.com

Source: Eric Haines, taken at NVIDIA booth

http://bit.ly/rtrtinfo and http://raytracinggems.com

