

ArtistArtist--Directable Directable
RealReal--Time Rain Rendering Time Rain Rendering
in City Environmentsin City Environments

Natalya TatarchukNatalya Tatarchuk

3D Application Research Group3D Application Research Group
ATI ResearchATI Research

What’s in It for You?What’s in It for You?

• Share our lessons of developing an extensive
environment for next generation
– To help you in similar research and development goals

– The new technology developed for this demo

• Learn what it means to render rain in city environments
– Novel algorithms

– Lighting and lightning

– Raindrops and puddles

• Lots of eye candy!

OverviewOverview

• Rain rendering: introduction
• Related work
• Lightning system
• Rendering rain precipitation
• Water effects – puddles and droplets
• Post-processing for glow and mist
• Wet reflections
• Results discussion

Introduction Introduction

The Challenge of Rendering RainThe Challenge of Rendering Rain

• Rain is hard!
– Creating convincing impression of

rain in rich natural environments
is a difficult task

• It is a complex phenomenon
– Vast diversity of rain components

– Huge amount of small details

• But - rain rendering greatly enhances outdoor
scenes!
– Many applications in games and motion pictures

– Challenging to film and even more so to render at interactive rates

Photorealistic rain greatly enhances the scenes of outdoor reality, with applications
including computer games and motion pictures. Creating a faithful representation of
rain in complex natural environments is a non-trivial problem. The challenge stems
not only from the visual complexity and diversity of the rain components and scene
objects, but also from the huge amount of small details that should be modeled to
obtain realistic visual effects and physically plausible simulation. However, rain
rendering greatly enhances outdoor scenes and is an important problem for
computer graphics, with many applications in computer games and motion pictures.
Filming rain scenes involves a significant effort and cost due to complicated setup.
This task becomes even more challenging when trying to create photorealistic
rendering of rain in rich environments at interactive rates.

Creating an Illusion of Rain in
Games
Creating an Illusion of Rain in
Games
• Rain consists of numerous effects interacting together

• Previously games focused on rendering rain with one or two
components
– Often only using simple alpha-blended particle systems for rain

which follow the camera – doesn’t look very realistic

– That type of rain does not respond to dynamic lighting

– Requires too many particles for a feeling of strong rainfall

• Recently, some were able to incorporate our
rain effects directly into their games

• “Heavy rain” by Quantic Dream –
post-processing rain effects and water droplets

Rain is an extremely complex atmospheric natural phenomenon. It consists of
numerous visual effects interacting together. Some recent games which incorporate
rain rendering use simplistic approaches, including rendering stretched, blended
particles to simulate falling raindrops or using blended animated textures (as in
[WW04]) to render precipitation. These methods fail to create a truly convincing and
interesting rain impression. Furthermore, games often limit using only one or two
individual rain effects (the rain particles or the scrolling textures and perhaps a CPU-
based water puddle rendering) to simulate the impression of rainy environment. This
results in an unrealistic rendering with the rain not reacting accurately to scene
illumination, such as lightning or spotlights. Simply rendering particle rain is not
enough: Rain has a variety of visual cues, not just the streaky drops. Missing pieces
can destroy the illusion of immersion

ContributionsContributions

• Need inexpensive and streamlined algorithms for
photorealistic rendering of rainfall and rain-related
effects
– For games and interactive applications

• Our contribution is an intuitive, comprehensive and
flexible system with numerous effects
– Supports rendering rain effects in real-time in a complex

environment

– Provides a high degree of artistic control for the final look

Rain is an extremely complex atmospheric natural phenomenon. It consists of
numerous visual effects interacting together. Although research has been done in
the area of rendering some individual components (rain streaks in [GN06], [WW04],
or water droplets on surfaces in [KIY99], [WMT05]), there exists a gap for creating a
complete system for rain rendering in complex environments. Simply adding several
individual components is insufficient as the discerning viewer’s eye quickly notices
the missing elements. For a truly convincing illusion of rain environment we must
present a coherent system supporting the full gamut of the natural phenomena
associated with rain.
There is a strong need for inexpensive and streamlined algorithms capable of
photorealistic rendering of rainfall and rain-related effects in games and interactive
applications. Photorealistic rain rendering requires convincing display of rainfall and
raindrops, various dynamic water-related effects for puddles and streaming water,
and a variety of scene effects for atmospheric effects and wet materials. Our main
contribution is an intuitive, comprehensive and flexible system for photorealistic
rendering of rain effects in real-time in a complex environment. We provide a high
degree of artistic control for achieving the desired final look. To our knowledge, this
is the first complete system of this kind.

Novel Algorithms for Rendering
Individual Rain Effects
Novel Algorithms for Rendering
Individual Rain Effects

Post-Processing Rainfall
Algorithm

Simulation and rendering of
dripping raindrops

Raindrop splashes

Simulation and rendering of
water droplet movement on
glass surfaces on the GPU

Misty objects in the rain
(Halos around light

sources and objects due
to light scattering)

Streaming water

GPU-Based Water Surface
Simulation for Puddle
Ripples due to Splashes

Atmospheric
Light

Attenuation

View-
Dependent
Warped
Reflections

We present a number of novel algorithms for rendering the individual components of
rain, including the following:
• A new post-processing composite rainfall algorithm exhibiting raindrop shape
perturbations and dynamic response to varied illumination conditions and viewpoints
• Simulation and rendering of raindrops dripping from various objects in the scene
• Techniques for raindrop splashes and splatters on solid objects and in water
puddles
• An engine-driven lightning illumination system for simulating lightning flashes
• Halos around light sources and objects due to light scattering in rainy mist
• A novel effect for rendering view-dependent warped reflections on wet surface
materials and puddles using reflection impostors
• Atmospheric light attenuation
• GPU-based water surface simulation for puddle ripples due to raindrop splashes
• A novel approach for the simulation and rendering of water droplets on glass
surfaces on the GPU, with wetting, droplet merging and separation phenomena
• A large number of supporting effects resulting in increased scene realism

Rendering Complex
Environment: Without Rain
Rendering Complex
Environment: Without Rain

Rendering Complex
Environment: With Rain
Rendering Complex
Environment: With Rain

Demo: The ToyShopDemo: The ToyShopDemo: The ToyShop

Let’s take a look at the demo.

Related WorkRelated Work

Related Work in Rain PrecipitationRelated Work in Rain Precipitation

• Much research on the rain phenomena in atmospheric sciences
([Mason75] and [Wang75])

• At the moment, only a few approaches exist for creating
realistic rainfall rendering
– Dynamically responding to lighting environment changes

and camera movement
• Constant brightness rain strokes generated in [Starik03] for

simulation of rain in videos
• Snow and rain precipitation in [Wang04]

– Modeled with interpolated hand-drawn textures

– With constant brightness

– Mapped on a camera-aligned double-cone

Rain effects have been examined in the context of atmospheric sciences, as well as
in the field of computer vision. However, at the moment only a few approaches exist
for creating realistic rainfall rendering that dynamically responds to the lighting
environment and camera movement. Constant brightness rain strokes are
generated in [SW03] for simulation of rain in videos. This approach fails to represent
dynamic illumination and camera movement. In [WW04] rain and snow precipitation
was modeled with several interpolated hand-drawn textures with constant
brightness mapped on a double-cone which is dynamically aligned to match the
camera orientation in real-time.

Related Work ReferenceRelated Work Reference

• For a thorough review of related work in
rendering rain components, look in
– Tatarchuk, N., Isidoro, J. 2006. Artist-Directable

Real-Time Rain Rendering in City Environments, in
proceedings of Eurographics Workshop on Natural
Phenomena, Vienna, Austria 2006

Lightning SystemLightning System

There’s No Thunder W’out
Lightning
There’s No Thunder W’out
Lightning
• Lightning and Thunder increases the feel of a rainy, stormy night

• Illumination from the
lightning flashes
needs to affect every
object in the scene

• Uniformly aligned
shadows are crucial

• At the same time, we
are still using shadow
mapping

• Computing lightning
shadows for each
additional lightning
light can hurt
performance

A dark night in rough weather would not affect the viewer in the same manner without the
sudden surprise of a lightning flash followed by the inevitable thunder. Creating a realistic
lightning effect in interactive applications is challenging for several reasons.
Illumination from the lightning flashes needs to simultaneously affect every object in the
scene. Uniformly aligned shadows are crucial. Simply adding extra shadowing lights for
each lightning is still an impractical approach for interactive applications due to associated
performance cost and additional memory requirements for storing shadow maps.

Lightning Challenges

• Lightning is a strong directional light
that has to affect every object in the
scene

• Lightning effect would feel very
repetitive if it only comes from one
direction

• The viewer can get very close to
some of the lightning shadows…

– Resolution has to hold up

Creating a convincing and realistic lightning effect is challenging for a variety of
reasons:
•Lightning is a strong directional light that has to affect every object in the scene.
•Lightning effect would feel very repetitive if it only comes from one direction.
•The viewer can get very close to some of the lightning shadows… resolution has to
hold up.
•Needs to work seamlessly with the other lighting solutions in our scene, such as
our depth mapped shadow casting lights.
•Computing this type of lighting effect at run time would be a huge performance hit.

Lighting System SolutionLighting System Solution

• In-engine system driving lightning flashes during
rendering
– Via rendering script (in Lua)

• Support multiple simultaneous lighting flash light
sources
– Limiting factor – memory footprint

Our proposed solution consists of a system driving lightning flashes and the
resulting illumination model consistently integrated into all materials and effects. We
support several simultaneous lightning flash light sources.

Solution: Lightning Maps

• Implemented lightning as 2
unique lightning lightmaps

• Encode scene lightning
information into maps
during preprocessing

• Artist editable intensity for
custom mixing of these
two maps

• Pre-rendered in Maya and
stored as a 8-bit grayscale
image

During the preprocessing phase for the environment several key lightning source
directions are picked by the artists and global illumination solutions are computed
for each selected light source. The encoded illumination value (in a series of 8 bit
textures per direction) is used at rendering time by all rendering components to
modulate the illumination result to account for a lightning flash event. This compact
representation allows us to create consistent uniform lightning shadows.
Implemented lightning as 2 unique lightning lightmaps:
- One at an angle and one closer to directly above the scene (slightly offset)
- Artist editable intensity parameter to allow for custom mixing of these two maps.
Mixing these two maps in different ways makes it seem like we have a wider variety
of lightning direction than we actually do. Pre-rendered in Maya and stored as a 8bit
grayscale image. Only needs to be 8bit as it is only used as an intensity value
multiplier of the underlying HDR lightmap. Does not need any additional tone info.
Packed into R and B of a single RGB image to reduce draw calls.
This value is also piped into other shaders, the rain for example. Used lightning
intensity to adjust the opacity of the rain. Use either or both lightning brightness
parameter or lightning lightmap sample added to the regular lightmap sample before
tone mapping

Incorporating Illumination
from Lightning
Incorporating Illumination
from Lightning
• Every shaded pixel uses lightning illumination information
• The script propagates these to all object shaders

– A lightning brightness parameter
– Lightning illumination is added to the regular illumination for each

material prior tone mapping
– Negligible performance cost: cheap and effective

• 1 additional texture fetch plus a couple of ALUs

• All object materials use this model and appear to respond
accurately to lightning illumination

• Translucency of water is affected by lightning strength
– Used the lightning brightness value to adjust the pixel’s opacity as

well for rain effects

Rendering Rain Rendering Rain
PrecipitationPrecipitation

Rain PrecipitationRain Precipitation

• Consists of water drops falling at high velocity, refracting and
reflecting the environment

• Falling raindrops create the perception of motion blur and parallax
– Dynamically generate ripples and splashes in puddles

• A hybrid system: an image-space approach for the rainfall and a
particle-based effects for dripping raindrops and splashes
– Render individual raindrop shape variation and motion parallax due to

differing depth for raindrop movement

– Render dynamic raindrop illumination

• Image-based precipitation effect does not incur extra performance
overhead for modeling heavy versus light rain
– Unlike purely particle-based approaches

Precipitation due to rain consists of spatially distributed water drops falling at high
velocity, refracting and reflecting the environment around it. As the raindrops fall
through the scene, they create the perception of motion blur and parallax and
generate ripples and splashes in puddles. We developed a hybrid system of an
image-space approach for the rainfall and particle-based effects for dripping
raindrops and splashes. We render individual raindrop shape variation and motion
parallax due to different depth for raindrop movement as well as dynamic raindrop
illumination. Unlike purely particle-based approaches, the image-based rainfall
precipitation effect does not incur extra performance overhead for modeling heavy
versus light precipitation.

Rendering Multiple Layers Rendering Multiple Layers
of Rain with a Postof Rain with a Post--
Processing Composite Processing Composite
EffectEffect

Our image-space rainfall effect simulates multiple layers of falling raindrops in a
single compositing pass over the rendered scene.
This method differs from most previous approaches in rendering the rainfall without
the use of a particle system with a large number of particles or rain textures. We
provide a set of artist controls for the rain direction, velocity, and strength. The
raindrop rendering receives dynamically-updated parameters such as the lightning
brightness and direction from the lightning system to allow correct illumination
resulting from lightning strikes.

Creating Rainfall with
Multiple Layers of Rain
Creating Rainfall with
Multiple Layers of Rain
• Render composite rainfall layer prior to the final

scene post-processing
– Rendered as a full-screen quad over the scene

• Must consider performance implications
– Every pixel on the screen goes through the rain shader

• Need minimize distracting repeating patters for
rainfall
– All the while keeping shader complexity minimal

We render a composite rainfall layer prior to the final post-processing of the
rendered scene. We must consider the practical performance implications of the
rainfall layer as a full-screen pass and design the algorithm to yield pleasing visual
results without expensive computations.
Raindrops behave like lenses refracting and reflecting (both specularly and
internally) scene radiances towards the camera. Tangent space is specified by the
view matrix (since it’s a full-screen quad)

Creating RainfallCreating Rainfall

• The artists specify the rain direction and speed in
world-space to simulate different rainfall strength
– Initial raindrop distribution is simulated with an animated 8 bit rainfall

position placement texture
– To simulate raindrop mistiness we blur the rain layer using the post-

processing pipeline

The first challenge lies in minimizing the repeating patterns that are inevitable when
using a single static texture to model dynamic textured patterns. Initial raindrop
distribution in the full-screen pass is simulated with an animated 8 bit raindrop
placement texture. Artists can specify the rain direction and speed in world-space to
simulate varied rainfall strength.

Moving Per-Frame Raindrop
Distribution
Moving Per-Frame Raindrop
Distribution

• Rain direction is moved into clip space
• For each pixel we determine each raindrop’s

distribution position in clip-space as follows:
– Using current time step ∆t and the rainfall speed vr

(xi, yi) = vr
cp · | vr | · ∆t

• Sample from the raindrop distribution texture
• So far fairly straight-forward

– But this alone would generate strong repeating patterns!
– Undesirable

At every time step we determine the raindrop clip space position (xi, yi) for every
pixel in the composite pass. Using an artist-specified rain direction vector vr in clip
space, the current raindrop position, and the rain speed, |vr| we compute the
tentative raindrop distribution texture coordinates as presented.

Simulating Multiple Layers of
Rain
Simulating Multiple Layers of
Rain
• Artists specify a rain parallax parameter pr

– Maps the depth range for rain layers

• Compute a randomized value for an individual raindrop ri

– Using the concepts of stochastic distribution for simulation of dynamic
textures

• Model multiple layers of rain in a single pass with a single
texture fetch from the rainfall position placement texture
– Using pr, ri, and the screenspace raindrop location (xi, yi)
– pr * ri used as the w for a projective texture read

• Allows simulation of raindrops falling with different speed at
different layers

We simulate multiple layers of rain moving with different speeds at varied depths
rendered in a single geometric layer. In order to create the illusion of several layers
of raindrops, the artists specify a rain parallax parameter pr which maps the depth
range for the rain layers in our scene. Using the concepts of stochastic distribution
for simulation of dynamic textures, we compute a randomized value for an individual
raindrop during the simulation, ri. Using the rain parallax value pr, the screen space
individual raindrop location (xi, yi) for a given pixel computed earlier and the
distribution parameter ri, we can model the multiple layers of rain in a single pass
with a single texture fetch. The parallax value for the raindrop, multiplied by a
distribution value, is used as the w parameter for a projective texture fetch to
sample from the rainfall movement texture:

wi = pr* ri .
This allows us to simulate raindrops falling with different speeds at different layers of
rain without obvious repeating patterns.

Rain AppearanceRain Appearance

• The layer of rain is shaded by using a normal
map of varied individual raindrop shapes.

• Light the raindrops using the scene lights
– Compute full reflection / refraction approximating air-to-water

transmission
– With Fresnel effect
– These are subtle but crucial effects for the soft look of rain

We use a normal map for falling raindrops to model illumination for each raindrop in
the composite layer. Our approach does not require any preprocessing and can
handle an arbitrary number of light sources. The lighting model for illuminating
individual raindrops is flexible.
Raindrops refract light from a large solid angle of the environment (including the
sky) towards the camera. Specular and internal reflections further add to the
brightness of the drop. Thus, a drop tends to be much brighter than its background
(the portion of the scene it occludes).
The solid angle of the background occluded by a drop is far less than the total field
of view of the drop itself. Thus, in spite of being transparent, the average brightness
within a stationary drop (without motion-blur) does not depend strongly on its
background. Falling raindrops produce motion-blurred intensities due to the finite
integration time of a camera. These intensities are seen as streaks of rain. Unlike a
stationary drop, the intensities of a rain streak depend on the brightness of the
(stationary) drop as well as the background scene radiances and integration time of
the camera.

Rain AppearanceRain Appearance

• The rain must correctly respond to lightning illumination
– Use lightning brightness parameters to bias reflection and refraction for

water effects
– Lightning brightness also adjusts the opacity and the glow amount

• Our approach does not require any preprocessing and can
handle an arbitrary number of light sources

• The layer of rain is shaded by using a normal
map of varied individual raindrop shapes.

• Light the raindrops using the scene lights

We use a normal map for falling raindrops to model illumination for each raindrop in
the composite layer. Our approach does not require any preprocessing and can
handle an arbitrary number of light sources. The lighting model for illuminating
individual raindrops is flexible.
Raindrops refract light from a large solid angle of the environment (including the
sky) towards the camera. Specular and internal reflections further add to the
brightness of the drop. Thus, a drop tends to be much brighter than its background
(the portion of the scene it occludes).
The solid angle of the background occluded by a drop is far less than the total field
of view of the drop itself. Thus, in spite of being transparent, the average brightness
within a stationary drop (without motion-blur) does not depend strongly on its
background. Falling raindrops produce motion-blurred intensities due to the finite
integration time of a camera. These intensities are seen as streaks of rain. Unlike a
stationary drop, the intensities of a rain streak depend on the brightness of the
(stationary) drop as well as the background scene radiances and integration time of
the camera.

Creating the Feeling of Strong
Rain
Creating the Feeling of Strong
Rain

• Realistic rain is very faint in bright regions of the
scene and tends to appear stronger when light falls
in a dark area
– If this is modeled exactly, the rain appears too faint

• Simulate an old Hollywood trick for rain on film
instead
– The film crew add milk to water to make rain appear stronger on film
– We do the same, by biasing rain color and opacity to appear whiter
– Although exaggerated, this creates a perception of stronger rainfall

Realistic rain is very faint in bright regions but tends to appear stronger when the
light falls in a dark area. Physically accurate modeling results in overly dim rain
appearance. We use a cinematic technique of adding milk to water while filming rain
as inspiration and bias the raindrops color toward the white spectrum to create a
stronger perception of rainfall.

Rendering Dripping Rendering Dripping
RaindropsRaindrops

Raindrop Particles RainRaindrop Particles Rain

• To simulate raindrops falling off various objects in our scene, we used
billboard particle systems

• Artist-placed and animated based on a ‘template’ system

• To render each individual particle:
– Stretch billboard based on velocity

– Use a normal map for a droplet (a blurry version of a full
raindrop’s normal map)

– Tangent space is defined by the view matrix

– Only compute reflection and refraction to simulate
air-to-water transmission

– Droplets should appear more reflective and
refractive when the lightning strikes

– Biased lightning brightness value adjusts the
refraction / reflection color

Raindrops off objects

During rain, raindrops drizzle from various objects in the scene - trickling off gutter
pipes, window ledges and so on.
We simulate this effect with the use of physics-based particle systems using screen-
aligned billboard representation for individual raindrops. The base particle system
simulation uses the physical forces of gravity, wind and several animation
parameters for raindrop movement. The artists can place any number of separate
particle systems, culled by the camera frustum during rendering, throughout the
environment to generate dripping raindrops.

Controlling Raindrop
Transparency
Controlling Raindrop
Transparency
• We attenuate raindrop opacity by distance

• Attenuate the opacity by Fresnel scaled and biased by artist-specified
edge strength and bias

– To make the raindrop appear less solid and billboard-like

• Observation: Raindrops should appear more transparent (like water)
when the lightning strikes

– Scaling the opacity by 1 – ½ * lightning Brightness does the trick

– The particles still appear their respective transparency when there is no
lightning

– They become more translucent-like when the lightning strikes

– This was used for both raindrop particles and raindrop splashes to
attenuate their transparency

Raindrop SplashesRaindrop Splashes

Raindrop SplashesRaindrop Splashes

• Raindrops splash when they hit solid objects

• We simulated that effect with individual
particles colliding with various objects
– In our pipeline, this was achieved with special

collider objects

– In games or future engines, this can be done
by directly colliding with objects

• Used a filmed high-quality splash
sequence for a milk drop:

• We used just one splash sequence for thousands of particles
– The repetition can easily be noticeable

– To reduce that, randomly scale particle size and transparency

– Randomly flip u texture coordinate based on pre-specified particle random color

Raindrop splashes

We utilize the particle systems for rain drop splashes off the surface of objects,
using pre-rendered high-quality splash sequence for a milk drop.

Illuminating the SplashesIlluminating the Splashes

• Splashes should appear correctly lit by the environment lights
– If light sources were behind the rain splashes, rendered the splashes as brightened

backlit objects

– Otherwise just used simple ambient lighting

– This worked particularly well when rendering under bright
sources

– Compute specular lighting in the vertex shader
for all lights

• We used an overhead lightmap to simulate
sky and street lamp lighting
– Use the splash world-space position as coordinates to

look up into this lightmap (with some scale and bias)

– The overhead lightmap value modulated splash illumination

Overhead lightmap

Used lightning brightness to both adjust the lighting for the splash and its opacity (as
described before)

Misty Object Halos Due to Rain
Precipitation
Misty Object Halos Due to Rain
Precipitation

• In a strong rainfall, raindrops
generate delicate halo outlines
around the edges of objects

• This effect can be generated
by using the “fins” technique
borrowed from the real-time fur rendering [Lengyel01]

• To create a rain halo effect, we insert a degenerate quad which
is extruded normal to the surface at object silhouettes
– The actual halo is rendered on each quad by using an algorithm

similar to the rainfall algorithm

In a strong rainfall, as the raindrops strike solid objects, they generate not only the
splashes, but also the delicate halo outlines along the edges of objects. This is a
very important visual cue which has been omitted from most of the existing
rendered rain environments. We support rendering of this effect for objects in our
scene (including the animated objects, such as cars by using normal ’fins’ (similar to
fur rendering in real-time in [LPFH01]). To create a rain halo effect, we insert a
degenerate quad which is extruded normal to the surface at object silhouettes. The
actual halo is rendered on each such quad by using the rainfall algorithm as an
animated texture, alpha-blended with the rest of the environment.

Rain SplattersRain Splatters

• Strong rainfall also generates an effect
of raindrop splattering on the surface
of wet materials

• We use a shells-based technique to
create this effect
– Again borrowing from the real-time fur

rendering approach [Lengyel01]

• Rain splatters are rendered on the
surface of objects in the form of
concentric circles
– In each successive shell expand the splash

circle footprint with a series of animated
texture fetches

– Blend onto the previous shells

Along with the water splashes from fast and heavy raindrops, strong rainfall also
generates a more subtle effect with the raindrop splattering on the surface of wet
materials. We use a shells-based technique to create the raindrop splatters. The
shells technique is widely used for rendering fur in real-time (as described in
[LPFH01]). We render the material with raindrop splatters as a series of extruded
shells around the original object. The rain splatters are rendered on the surface of
objects in the form of concentric circles. In each successive shell we expand the
splash circle footprint with a series of animated texture fetches and blend onto the
previous shells. This creates a very convincing effect of dynamic splatters on
objects due to raindrops.

Demo: The TaxiDemo: The Taxi

GPUGPU--Based Water Based Water
Simulation for Puddle Simulation for Puddle
RenderingRendering

Water Ripples in PuddlesWater Ripples in Puddles

• Goal: Dynamic realistic wave motion of interacting ripples over the
water surface

– With fast simulation directly on the GPU

• Water ripples are generated as a result of rain drops falling onto
the geometry in the scene

– We support generation of raindrop ripples as a result of direct collision

– However, for our scene that would require too much memory

• Instead, we use a stochastic seeding method for the simulation

– Seeding rain drops into a texture

– Spatter raindrops as points into the water simulation texture

• Can also render object outlines into the seeding texture to generate
wakes

The raindrop particle collisions generate ripples in rain puddles in our scene. The goal was
to render dynamic realistic wave motion of interacting ripples over the water surface using
the GPU for fast simulation. Due to memory considerations, we currently use the
stochastic seeding method, rather than direct collision response, for a simulation on a
256x256 lattice.
We splatter the raindrops as point primitives into the water simulation texture with the
RGB value proportional to the raindrop mass during the first pass of the simulation. This
method can be applied to generate dynamic water surface response for arbitrary objects.
This can be achieved by rendering an orthographic projection of the objects into the
seeding texture using the object’s mass as the function for color of the object’s outline.
Pass 1: Render seeds into the first water simulation buffer

These seeds rendered as initial positions of water ripples
The seeds ‘excite’ ripple propagation

Pass 2 and Pass 3: Perform integration on water surface simulation
Uses ‘ping-pong’ texture feedback approach
We only use two passes, but more will help with system stability if time step desired
to be smaller
These passes generate water height field

Pass 4: Generate water normals
Sample from the water normals texture when rendering an object with puddles

• Approximate water surface with a lattice of points
– We render our surfaces with a 256 x 256 simulation
– Each lattice contains information about water surface at that point

• Current position as a height value
• Previous time step’s position

• We simulate the water lattice entirely on
GPU
– Using a texture to store lattice positions

and its attributes
– Similar to “Interactive Simulation of Water

Surfaces” by M. Gomez (Game
Programming Gems)

– However, there the lattice is approximated with vertices on the
CPU

Water Surface ApproximationWater Surface Approximation

Water lattice heights: Current frame’s
height in R channel and previous
frame’s height in G channel

We approximate the water surface as a lattice of points on the GPU containing the
information about the water surface in that location (we store the current and previous
time step wave displacement values). These quantities can be packed into a single 32 bit
texture using 16 bit per channel, giving a good precision balance for computing
displacements. This would generate a wake effect in the water surface.

Simulate Water InteractionSimulate Water Interaction

• Real-life raindrops generate multiple ripples that
interact with other ripples on the water surface
– We implement the same model

• Single rain drop generates ripples with damping for
the duration of the splash life span

• Render a raindrop into the wave height texture
using a dampened sine wave
– As a function of the raindrop mass

– Approximates the concentric circular ripples

Similar to real-life raindrops, a single raindrop in our system excites multiple
interacting ripples on the water surface. The rendered seeds act as the initial ripple
positions by exciting the ripple propagation in the subsequent passes. Real-life
raindrops generate multiple ripples that interact with other ripples on the water
surface. We implement the same model. We render a raindrop into a wave seed
texture using a dampened sine wave as the function for raindrop mass. This
approximates the concentric circular ripples generated by a typical raindrop in a
water puddle.

Water Surface ResponseWater Surface Response

• Treat water surface as a thin elastic membrane
– Ignore gravity and other forces

– Only account for surface tension

• At every time step, infinitesimal sections of this
surface are displaced
– Due to tension exerted from their direct neighbors

– Acting as spring forces to minimize space between them

The physics simulation for water movement is done entirely on the GPU. We treat the
water surface as a thin elastic membrane, computing forces due to surface tension and
displacing water sections based on the pressure exerted from the neighboring sections.

Computing Ripple HeightsComputing Ripple Heights

• Vertical height of each water surface point can be
computed with partial differential equation:

where v is the velocity of the waves traveling across the surface

• Solve this equation in real-time to determine water wave
height for each point in the lattice
– PDE solution is computed with explicit Euler integration in SM 2.0 pixel

shaders

– Two passes gave us sufficiently stable simulation

• During the final pass, compute the water normals using a
Sobel filter on the wave heights

∂2z
∂t 2

= v 2 ∂2z
∂x 2

+
∂2z
∂y 2











We use explicit Euler integration in DirectX9.0 pixel shaders to solve this PDE in
real-time by using a texture feedback approach to determine the water wave heights
for each point on the lattice. We found that two passes are sufficient for a stable
simulation. During the final pass we compute the normals for the water
displacements using the Sobel filter.

Integrating Water Puddles Integrating Water Puddles

• We render a single water simulation for the entire demo
– All objects with water puddles sample from that (for example, streets, rooftop

ledge, etc)

• Sample from water membrane simulation
using current position
– Use the (xz) world-space coordinates for

look-up

– Scaled by the artist parameter to vary by size
of membrane simulation (and size of ripples)

– To reduce visual repetition, we rotate these
coordinates by a pre-specified angle (ex: 15°)

– Angle is specified per-object

• No additional geometry is required
for water puddles

We sample from the water membrane simulation using the object’s current position in
world space (the xz Cartesian coordinates) as a lookup texture coordinates into the
computed ripple wave normal map. Since our system implements a single ripple
simulation for all puddle surfaces due to memory considerations, this limitation is
overcome by providing the artists control over the ripple sampling space. To reduce visual
repetitions of the resulting puddles, we provide a per-object scale parameter so for ripple
waves and a rotational angle qo for the ripples look-up. The ripple simulation sample
coordinates are rotated in texture space based on the specified object angle qo. Note that
no additional geometry is required for puddle integration. This approach also enable our
system to control turning on and off of puddle rendering on demand by using a material
parameter and dynamic flow control features of the latest shader models. We also specify
the puddle strength parameter to specify how much the ripple normals perturb the original
bump map. This allows create different water motion for various objects

Puddle Placement and DepthPuddle Placement and Depth

• To render deep puddles, we use just the water puddle normal sampled as
just describe, along with color / albedo attributes of the object

• However, in real environment, puddle depth varies greatly

• To simulate that, we allow a puddle depth and location mask map

• Adding puddles with ripples to objects:

– Define scale parameter and sample ripple
normals

– Sample puddle depth map

– Interpolate between the normal map for
the object and the water surface normal
based on the puddle depth value

In real environments, water puddle depth and locations differ significantly due to
landscape details and rainfall accumulation.
Our system provides complete artistic control over the puddle placement and depth with a
puddle depth mask. This mask specifies both the location of each puddle in the
environment and its depth variation. Adding puddles with dynamic ripples to objects is
intuitive with this approach. During rendering, we first sample the puddle depth map for
the current depth value di. Then the ripple normal map is sampled as described earlier.
We observe that the deep puddles’ visual properties depend mainly on the color of the
underlying material (for example, the asphalt on the street), and the water surface
geometric properties for illumination. As the light rays refract through the water surface,
the viewer observes the color properties of the material. However, the actual micro
geometric structure of the surface under the puddle does not influence the appearance of
the puddle. Therefore to modify the apparent puddle depth, we can specify the influence
of the water surface normal as compared to the object normal vector pi.
We interpolate between the object normal vector and the water surface normal based on
di and an artist-specified puddle influence parameter pi. Using this perturbed normal, we
render the objects with water surfaces using Fresnel equations ([Jen01]) for water-air
refraction and reflection, as well as the material properties of the object as desired. We
also specify the puddle strength parameter to specify how much the ripple normals perturb
the original bump map. This allows create different water motion for various objects

Creating Swirling Water
Puddle
Creating Swirling Water
Puddle
• Create an impression of water, swirling towards the drain, with

ripples from the raindrops
• To create ripples from raindrops, use the

same approach as for puddles on the street
• For water, swirling toward the drain,

we used several ‘wake’ normal maps
– Swirling radially around the drain

– Concentric circles draining toward
the drain

Water Droplet Animation Water Droplet Animation
and Rendering on Glass and Rendering on Glass
Surfaces in RealSurfaces in Real--Time on Time on
the GPUthe GPU

Water Droplets Trickling
Down on Glass Surfaces
Water Droplets Trickling
Down on Glass Surfaces
• Adopted an offline raindrop simulation system from [Kaneda99] to

the GPU

– Dynamically animate and render a large number of water droplets on
glass surfaces on the GPU

– The simulation is modified to use a gather pass in the pixel shader, rather
than original scatter-based particle system implementation

• The droplet shape and motion is influenced by the forces of gravity
and the interfacial tension forces, as well as air resistance

We adopted an offline raindrop simulation system from Kaneda99 to the GPU to
dynamically animate and render a large number of water droplets and their streams
trickling down on glass planes in real-time. We animate and render the droplets entirely on
the GPU, with the simulation using the gather operation in the pixel shader, rather than the
original scatter-based particle system implementation. The shape and motion of water
droplets is influenced by the forces of gravity and the interfacial tension force, as well as
air resistance. We generate the quasi-random meandering of raindrops due to surface
tension and the wetting of the glass surfaces due to water trails left by droplets traveling
on the surface. Our system produces correctly lit droplet appearance including the
refraction and reflection effects.
We run the more extensive droplet simulation on the main store front windows, whereas
for other windows in the environment we have a version that only renders static droplets
with some texture tricks to make them appear moving.

• The surface of the glass is represented by a lattice of
cells

• Each cell contains:

– The mass of water in each cell

– Velocity in x and y

– The droplet traversal quantity within the cell

– Water affinity parameter for the surface

• The droplet information is packed into a 16-bit per
channel RGBα texture

Droplet MovementDroplet Movement

We represent the glass surface as a discrete lattice of cells, storing the water mass Mi, j at
that location, the velocity vi, j, and the droplet traversal quantity ti, j within each cell (i, j).
Each lattice cell stores the affinity parameter ka(i, j) (artist-specified or assigned at random
from a normal distribution) which describes the hydrophobic or hydrophilic properties of
that surface location.
The droplet information is packed into a 16-bit per channel RGBa texture.

Droplet Movement SimulationDroplet Movement Simulation

• Droplets can flow into one of the 3
cells below

• New cell to flow into is randomly
chosen

– Biased by velocity, friction based
affinity and wetness of the target cell

• Droplets have a greater affinity for
wet regions of the surface

• Velocity is updated based on target
cell chosen

Droplet Simulation: ForcesDroplet Simulation: Forces

• Gravity and mass are used to compute
the downward force on the droplet

• Static friction for stationary droplets, and
dynamic friction for moving droplets is
used to compute the competing upward
force

– The static and dynamic friction varies over
the surface of the glass

• This resultant force is applied to the initial
velocity to determine the new velocity
value for the droplet

Fdown = M * G

Vnew = Vi +F/M * t

Fup = fstatic or
fdynamic

The droplet begins to trickle down the glass surface when the acting downward forces
start to exceed the upward resisting forces on the droplet. Droplet movement direction is
determined by external forces acting on the droplet, however, the meandering of the
droplet path also depends on the surface properties of the glass (due to impurities, small
scratches or grooves). Additionally we can account for obstacles on the droplet path which
can be encoded into the cell information.

Droplet RenderingDroplet Rendering

• After simulation, each cell
contains a new mass value

• A bump map is derived based
on this mass
– This is used to perturb reflection

& refraction vectors

• The droplet mass is also used
to render dynamic shadows of
the simulation onto the objects
in the toy store
– If the droplet mass is large

enough, we render a ‘caustic’
highlight in the middle of the
shadow for that droplet

The scene is rendered first and then we render the water droplet simulation on the window
after that. This allows us to reflect and refract the scene through the individual water
droplets. In order to do that, we use the water density for a given rendered pixels. If there
is no water, we simply render the scene with regular properties. However, if the water is
present, then we can use the water mass as an offset to refract through that water droplet.

Rain Effects - Windshield WipersRain Effects - Windshield Wipers

• Wiper shader with
droplets on glass of car

– Wiper parameter is
passed into the shader

– Wiper maps are used to
determine what regions
have been recently swept
clean

– Two separate wiper maps
so wiped regions can
overlap

Demo: Water DropletsDemo: Water Droplets

ViewView--Dependent Streaky Dependent Streaky
ReflectionsReflections

Strong Reflections in a Rainy
Scene
Strong Reflections in a Rainy
Scene
• Realistic streaky reflections increase the feel of rain on wet

street and surfaces
– Very prominent in any rainy scene

– Appear to elongate toward the viewer

– Much more saturated for brighter sources

We render bright objects into the half-size reflection buffer [1/4 for the roof]. We
render a variety of objects, for example, all of the scene lamp, telephone pole lights,
neon sign, traffic lights, etc. We specify the reflection buffer to be 1010102 as well
so that we can preserve most of the light dynamic range (brighter than 1). In our
case it’s more 0-6.5 range. To save on draw-calls – all street lamps are rendered as
one big object (using skinning) Use the same technique as we did for blurring the
blow buffer to streak the reflection buffer and simulate water mistiness. We sample
from the reflection buffer using screen space projection of the input vertex
coordinate. We also use the normal in tangent space to account for stretching of the
reflection in view space and warp the reflection based on the surface normal.

Rendering View-Dependent
Reflections
Rendering View-Dependent
Reflections
• Render reflections of complex arbitrary objects by

rendering their impostors
– Approximating the geometry of the reflected scene

– Render reflector impostors into a separate reflection buffer

• Render the reflector objects into billboard reflector
impostors
– For bright light sources and objects and for dark objects

– Render the impostors fully lit with the simplified material shaders
for accurate dynamic reflection appearance

– Reflection material shader saturate the dominant colors

We render reflections of complex arbitrary objects by using their impostors
approximating the geometry of the reflected scene. We render the reflector objects
into billboard reflector impostors (as described in [MS01]) both for the bright light
sources and the dark objects (such as the telephone poles)). We render the
impostors lit with the scene illumination using manually-simplified material shaders
to ensure the accurate reflections appearance, however, the reflections materials
shaders strongly saturate the dominant colors. The dynamic lighting allows us to
represent reflected animated light sources (such as a flickering neon light or blinking
traffic lights in the streets) correctly. The reflections attenuate simultaneously with
their corresponding reflector objects.

Reflection Impostor RenderingReflection Impostor Rendering

• Impostor geometry is dynamically
stretched view-dependently toward
the viewer in the vertex shader
– The amount of stretching varies

depending on reflector object’s
distance to the viewer

• Reflection buffer is downscaled to
half size of the frame buffer

• Use HDR texture formats to preserve
the dynamic range of reflections

• All reflector impostors are occluded
as necessary by simple invisible
blocker geometry

Rendered reflection objects

The reflection impostors are dynamically stretched view-dependently toward the
viewer in the vertex shader. The amount of stretching varies depending on the
distance of the object to the viewer. The reflection buffer is down-scaled to half size
of the original rendering buffer, and we use HDR texture formats to preserve the
range for the reflections. The post-processing blurring technique is used to
dynamically streak the reflection buffer in the vertical direction to simulate warping
due to raindrops striking in the puddles. Note that this is done in separate passes
from the regular scene post-processing. The downsampling of the reflection buffer
provides additional blurring for the reflections. To render objects with the stretched
reflections, we sample from the reflection buffer using the screen space projection
of the input vertex coordinate for each reflective object. We use object’s per-pixel
normal in tangent space to account for stretching of the reflection in view space and
distort the reflection based on the surface normal. The post-process based blurring
and further warping alleviates specular aliasing and excessive flickering from
reflections which would otherwise be highly distracting.

Incorporating Streaky
Reflections
Incorporating Streaky
Reflections
• During the final rendering of the scene, sample from the reflection

buffer using the screen-space projection of the vertex
– Use the object per-pixel normal in tangent space to account for stretching of

the reflection in view-space

– Warp the reflection based on the surface normal for the reflecting object

• To make the wet reflections appear blurry and streaky, we use the
post-processing pipeline and apply a Kawase-style blurring in vertical
direction only
– This creates a feeling of misty reflections that are dynamically distorted by the

raindrops

– This is a separate pass from the regular scene post-processing

– Additional benefit: this alleviates specular aliasing and excessive flickering of
reflections

The post-processing blurring technique is used to dynamically streak the reflection
buffer in the vertical direction to simulate warping due to raindrops striking in the
puddles. Note that this is done in separate passes from the regular scene post-
processing.
The downsampling of the reflection buffer provides additional blurring for the
reflections. To render objects with the stretched reflections, we sample from the
reflection buffer using the screen space projection of the input vertex coordinate for
each reflective object. We use object’s per-pixel normal in tangent space to account
for stretching of the reflection in view space and distort the reflection based on the
surface normal. The post-process based blurring and further warping alleviates
specular aliasing and excessive flickering from reflections which would otherwise be
highly distracting.

Results DiscussionResults Discussion

Test System: ATI ToyShopTest System: ATI ToyShop

• Implemented in DirectX 9.0c
– Using HLSL SM 3.0 shaders

– Lua scripting language for rendering scripts

• Roughly 300 shaders for various rain-related components
– ~500 individual shaders for the entire system

• Although our environment is a night time scene, the algorithms can be
applied in variety of lighting simulations

• Environment geometry, textures and related offscreen buffers used
~240MB video memory
– High resolution textures were used to capture extreme detail of the

represented world

• Approximately 5K-20K particles were used for raindrops and rain
splashes

Our test system consisted of rendering several city blocks in stormy weather, with
animated vehicles and other objects in the scene. We used DirectX 9.0c c HLSL
shaders to implement all of our effects, and the Lua scripting language to create the
rendering scripts for the post-processing system and lightning integration. For
rendering rain-related effects, nearly 300 unique shaders were used, with more than
500 used to render the entire complex environment in full.
The rain-related shaders included various object shaders for wet materials, dynamic
water simulation shaders, view-dependent reflections, raindrops, rain splashes,
misty halos around objects, composite rainfall layer rendering, water droplet
rendering and so on. Although our example video contains rendering of a night
scene, the approaches presented in this paper can be successfully used in variety
of lighting environments, including daytime renderings. The environment geometry,
textures and rain-related offscreen buffers used 240 MB of video memory. In order
to create a realistic environment, high resolution textures were used to capture the
extreme detail of the represented world. For rendering individual falling raindrop
and their splashes we used from 5,000 to 20,000 particles depending on a particular
scene.

PerformancePerformance

• Measured on 1GB Dual 3.2 GHz Pentium 4 PC with
ATI Radeon X1900 XT with 512MB of video
memory

• Achieve frame rates of 26-69 fps
– Rendering time for the raindrop particles and splashes was

limited by the CPU

We measured performance of our system on a 1GB Dual 3.2GHz Pentium 4 PC
with a ATI Radeon X1900 XT
graphics card with 512MB of video memory. Using our system on a complex
environment described above, we achieve frame rates of 26-69 fps for the final
rendering (shown in the accompanying video) depending on the complexity of a
specific scene and a combination of rain effects (see next slide for the individual
effect timings). Note that the rendering time for the raindrop particles and splash
was limited by the CPU as the particle system simulation was running on the CPU
and was CPU-bound.

Rain Components Rendering
Times
Rain Components Rendering
Times

6.98 ms143.49 fpsGPU-based water rendering (with
simulation)

6.59 fps152.35 fpsRendering objects with droplets
(includes simulation)

8.74 ms114.48 fpsView-dependent reflections

31.25 fps32 fpsComplete system rain rendering
15.71 ms62.54 fpsRendering w/out rain effects

2.41 ms4114.03 fpsPost-processing for glow

3.50 ms285 fpsRaindrop splatters

18.93 ms52.84 fpsMisty object halos

20.01 ms52 fpsRaindrop splashes (5K)

19.45 ms51.46 fpsRaindrop particles (5-10K)

4.11 ms

Rendering Time

243 fps

Frame Rate

Composite rainfall

Effect

ConclusionsConclusions

ConclusionsConclusions

• Convincing and visually pleasing rendering of rain effects enhances the
realism of outdoor scenes in many applications

• We described a comprehensive system for interactive rendering of rain effects
in real-time in complex environments

• Presented a number of novel effects, including
– Image-space rainfall rendering

– GPU-based water simulation for dynamic puddle rendering

– Water droplet animation and rendering using graphics hardware

– View-dependent wet reflections

• All of the these effects help us generate an extensive, detail-rich urban
environment in stormy weather

• We hope to see these and better effects in a variety of real-time applications and
games!

Convincing and visually pleasing rendering of rain effects enhances the realism of
outdoor scenes in many applications. In this paper we described a comprehensive
system for interactive rendering of rain effects in real-time in complex environments.
We presented a number of novel effects such as the image-space rainfall rendering,
GPU-based water simulation for dynamic puddle rendering, water droplet animation
and rendering using graphics hardware and view-dependent wet reflections,
amongst all. All of the these effects help us generate an extensive, detail-rich urban
environment in stormy weather. We hope that the new technology can be
successfully used in the next generation of computer games and real-time
rendering.

AcknowledgmentsAcknowledgments

• John Isidoro – for developing many of the rain effects
described here and his great work on the ToyShop demo

• Thorsten Scheuermann for the initial GPU water idea

• David Gosselin for the idea of rendering the misty halo
outlines using fur fins

The ToyShop TeamThe ToyShop Team
Lead ArtistLead Artist Lead ProgrammerLead Programmer

Dan Roeger Natalya TatarchukDan Roeger Natalya Tatarchuk

David GosselinDavid Gosselin

ArtistsArtists

Daniel Szecket, Eli Turner, and Abe WileyDaniel Szecket, Eli Turner, and Abe Wiley

Engine / Shader ProgrammingEngine / Shader Programming

John Isidoro, Dan Ginsburg, Thorsten Scheuermann and Chris OatJohn Isidoro, Dan Ginsburg, Thorsten Scheuermann and Chris Oat

ProducerProducer ManagerManager

Lisa CloseLisa Close Callan McInallyCallan McInally

Truly a team effort of which we are all very proud of.

Reference MaterialReference Material

• www.ati.com/developer

– All of these presentation and related materials
• http://www.ati.com/developer/techreports.html

– Downloadable publications and videos from ATI Research

– Tatarchuk, N. 2006. Dynamic Parallax Occlusion Mapping with
Approximate Soft Shadows, ACM SIGGRAPH Symposium on
Interactive 3D Graphics and Games

– Tatarchuk, N., Isidoro, J. 2006. Artist-Directable Real-Time Rain
Rendering in City Environments. Eurographics Workshop on
Natural Phenomena, Vienna, Austria, September 2006.

ReferencesReferences

• [Garg04] GARG K., NAYAR S.: Detection and removal of rain from videos. IEEE
Conference on Computer Vision and Pattern Recognition (2004), 528–535.

• [Garg06] GARG K., NAYAR S.: Photorealistic rendering of rain streaks. ACM
SIGGRAPH 2006, August 2006.

• [Mason75] MASON B. J.: Clouds, Rain and Rainmaking. Cambridge Press, 1975.

• [Narasimhan03] NARASIMHAN S. G., NAYAR S. K.: Shedding light on the weather. In
IEEE CVPR (2003).

• [Starik03] STARIK S., WERMAN M.: Simulation of rain in videos. International Journal
of Computer Vision Texture 2003 (The 3rd international workshop on texture analysis
and synthesis) (2003), 95–100.

• [WW04] WANG N., WADE B.: Rendering falling rain and snow. ACM SIGGRAPH
Sketches (2004).

• [Wang75] WANG T., CLIFFORD R. S.: Use of rainfall-induced optical scintillations to
measure path- averaged rain parameters. JOSA (1975), 8–927–237.

Questions? Questions?

Thank you!

