Ambient Aperture Lighting

Chris Oat
3D Application Research Group
ATl Research, Inc.

Outline

 Ambient Aperture Lighting — 45 minutes
— Visibility aperture
— Area light sources
— Hard & Soft shadows

Shading model that uses apertures to approximate a visibility function

— Precomputed visibility
— Dynamic spherical area light sources
— Dynamic point light sources
— Hard & Soft shadows
Similar to horizon mapping, but allows for area light sources

The “ambient” comes from the fact that we use a modified ambient
occlusion calculation to find an aperture of average visibility

Developed with Terrain rendering in mind but can be used for other
things as well...

What are the applications?

* Non-deformable models
— Terrains

— Static scene elements
* Buildings
e Statues

* Dynamic spherical area light sources
— Hard & Soft shadows

* Applications where performance is critical and
rendering must still look realistic (but not
necessarily physically correct)

How does it work?

* Ambient aperture lighting works in 2 stages

* Precomputation Stage

— Visibility function is computed at every point on mesh
* Per-vertex or per-pixel

— Visibility function is stored using a spherical cap

— Spherical cap stores an average, contiguous region of visibility

* A spherical cap is a portion of a sphere cut off by a plane (a hemisphere itself is a spherical
cap)

e Rendering Stage
— Spherical cap acts as an aperture

— Aperture is used to restrict incoming light so that it only enters the from visible
(un-occluded) directions

Area light sources are projected onto the hemisphere and are clipped against
the aperture

This determines how much of their light passes through the aperture

Precomputation stage

* The precomputation stage can be thought of as a two step
process:

e Step 1.
— Find visible area
* Area of hemisphere that is unoccluded by the surrounding scene
— This serves as the area of our aperture/spherical cap

e Step 2:
— Find average direction of visibility

e Just like finding a bent normal
* Average of all un-occluded rays fired from a given point

— This serves as the orientation of our aperture/spherical cap

Visible area (aperture size)

VisibleArea(x) = 2 7Z'J. Vix,o)dw
2

For every point on the mesh (vertex/pixel):

— Cast a bunch of rays

— Determine what percentage of rays reach infinity (un-occluded)
— Multiply by 2PI (area of unit hemisphere)

The average area of visibility used as aperture size

— We assume visible area is contiguous and circular region (i.e. a
spherical cap)

Store arc length of the cap’s radius
— arc length of radius = acos(-area/2PI + 1)

Single float value, stored per vertex/pixel

Visible direction (aperture orientation)

VisibleDir(x) = J Vx,0)odo
()

For every point on the mesh (vertex/pixel):

— Cast a bunch of rays

— Determine average direction for which rays reach infinity
(un-occluded)
* This is frequently referred to as a bent normal

This gives you the average direction of visibility
Use this for your aperture’s orientation
A float3 per vertex/pixel

Project spherical area light source onto hemisphere

Projected area light source covers some area of the
hemisphere
— Projected sphere forms a spherical cap, just like our aperture

Find the intersection of the projected light’s spherical cap
and the aperture’s spherical cap

Once the area of intersection is found, we know the portion
of the light source that passes through the aperture

Finding area of intersection

7 A

Intersection area of two spherical caps is a function of the arc lengths
of their radii (rO, rl) and the distance between their centroids (d)

Ifd >=r0 +rl
— No intersection
— Thus areais 0O

If min(rO,rl) <= max(r0,rl)-d
— Fully intersected
— Use the area of the smallest cap

— Area of cap: (27 —27zcos(min(rl, r0)))

Otherwise...

Spherical cap intersection

2 cos(rl)arccos w
o sin(d)sin(r1)

—2cos(r0) arccos(

sin(d)sin(r0)

5 arecos —cos(d)+cos(r0)cos(rl)

—zZarceosy| ———m—————
sin(70)sin(r1)

— 27 cos(r1)

e Oh no!

» After all our simplifications, we're left with this
monster to solve!

e |Let's take a closer look at the Iintersection area
function...

*Simplified form of intersection area function given by [Tovchigrechko]

Intersection function

Case: 1 Case: 2 Case: 3

e Case 1 and 3 handled by our early outs
— Case 1 : Full intersection
— Case 3 : No intersection

* [ntersection area decreases as caps move away from
each other

* Smooth falloff with respect to distance

Smoothstep saves the day

637—‘}0—}1‘
_ - ;0+r1—\;0—;1\

Y :
Area of smallest spherical cap

(27 =27 cos(min(r1,70))) smoothstep(0,1.1—
—

e Case 1: Full intersection
— Smoothstep returns 1
e (Case 2: Partial intersection
— Smoothstep returns smooth falloff (depending on amount of overlap)
— Gives a smooth transition from full intersection to no intersection
— Scaled by area of smallest cap
e (Case 3: No intersection
— Smoothstep returns 0

Quality Comparison

Top: Exact results Bottom: Approximation

Intersection area approximation

SphericalCaplntersectionAreaFast (fRadiusO, fRadiusl,
TArea;

(fDist <= (fRadiusO, fRadiusl) - (fRadiusO, fRadiusl))

fArea = 6.283185308 - 6.283185308 * ((fRadiusO,fRadiusl));

(fDist >= fRadiusO + fRadiusl)

fArea = 0O;

foiff = (fRadiusO - fRadiusl);
fArea = (0.0,
1.0,
1.0- ((fDist-fDifF)/(fRadiusO+fRadiusl-fDiffF)));
fArea *= 6.283185308 - 6.283185308 * ((fRadiusO,fRadiusl));
by

return fArea;

Don't forget about our friend Lambert

Reflectance is determined by the area of intersection and Lambert’'s Cosine
Law

Find a vector to the for the region of intersection

This is estimated by averaging the aperture’s vector and the light’s vector

Scale the intersection area by N.Vcentroid
* IntersectionArea * saturate(N.Vcentroid)

This provides a Lambertian falloff as the light source approaches the horizon

Just another approximation on top of all the others we're making ©

Assumes the area above intersection’s centroid is about the same as the
area below the intersection’s centroid
— Negative error above the centroid cancels the positive error below the centroid

Ambient light 7

We now have a function for finding direct lighting from area
light sources, but we’d like to incorporate some form of
ambient light to account for light scattered in from the sky

Treat sky as if it were a giant area light behind the sun:
— Compute area light/aperture intersection
— |If area of intersection is less that area of aperture, fill the missing

space with indirect “ambient light”

* For aterrain, use the average sky color (lowest MIP level of sky dome?)
— Blue during the day
— Redish-pink at sun set
— Black at night

e \Works better than the standard constant ambient term

— Only applies to areas that aren’t being lit directly and aren’t totally
occluded from the outside world

Demo: Terrain

What are the benefits of this technique?

Area light sources
— Better than N.L with point light sources
— Hard shadows for small area light sources
— Soft shadows for large area lights sources

Small storage requirements
— Just 4 floats per-vertex or per-pixel

— Or 3 floats if you store aperture orientation in tangent space and derive
Zz component in your shader

Doesn’t require additional transforms
— Shadow maps require transforming model one or more extra times

Very cheap to compute
— Just a handful of vertex shader or pixel shader instructions
— Gives pleasing results

What are the potential downfalls?

Assumes visible region is contiguous and circular
— Sphere over plane (see example)
— Which way should visibility aperture point?
— Visible region is a band around the horizon, this is poorly approximated by a spherical cap

Multiple light sources don't occlude each other
— You’d have to compute area of overlap to make sure you don'’t over light
— In practice this isn't necessarily a huge issue (people expect 2 light sources to make things twice as bright)

Assumes non-local light sources
— Light source can't be between point being shaded and it's blocker
— Results in incorrect shadowing

Works well with terrains
— Terrains typically have nicely behaving visibility functions
— Occlusion is a band along the horizon
— Visibility region is generally a contiguous, circular region somewhere in the sky

Taking it to the next level

* Multiple visibility apertures
— Fixes case where you're in a room with multiple windows
— Multiple contiguous regions of visibility

* QOcclusion “anti-apertures”
— Contiguous regions of occlusion
— Fixes sphere over plane case

— Spherical cap intersection gives amount of occlusion
rather than amount of light

Preprocessor optimizations

e Speed up or even eliminate the preprocessing step

— Exploit the fact that Aperture can be computed using modified
ambient occlusion and bent normal preprocessors

e Google for:

— GPU accelerated ambient occlusion
* Improve preprocessing speed
 D3DX provides a GPU accelerated SH direct lighting function
— First coefficient can be used to approximate visible area
— Next 3 coefficients approximate average visible direction

— Dynamic ambient occlusion
* Eliminate the need to preprocess
* Allows for deformable meshes

Conclusion

A method for shading using dynamic area light
sources

Well suited for outdoor environments
— Static environment
— Spherical area light source: Sun

— Contiguous, circular regions of visibility
Low computational complexity
Very low storage cost

References

* MAX, N. L. Horizon Mapping: Shadows for Bump-mapped
Surfaces. The Visual Computer 4, 2 (July 1988), 109-117.

SLOAN, P.-P., KAUTZ, J., SNYDER, J., Precomputed
Radiance Transfer for Real-Time Rendering in Dynamic,
Low-Frequency Lighting Environments, SIGGRAPH 2002.

TOVCHIGRECHKO, A. AND VAKSER, I.A. 2001. How
common is the funnel-like energy landscape in protein-
protein interactions? Protein Sci. 10:1572-1583

Questions?

Chris Oat

These slides are available for download:
www.ati .com/developer

