
Chris Oat
3D Application Research Group
ATI Research, Inc.

Ambient Aperture LightingAmbient Aperture Lighting

OutlineOutline

• Ambient Aperture Lighting – 45 minutes
– Visibility aperture
– Area light sources
– Hard & Soft shadows

What is Ambient Aperture lighting?What is Ambient Aperture lighting?

• Shading model that uses apertures to approximate a visibility function
– Precomputed visibility
– Dynamic spherical area light sources
– Dynamic point light sources
– Hard & Soft shadows

• Similar to horizon mapping, but allows for area light sources
• The “ambient” comes from the fact that we use a modified ambient

occlusion calculation to find an aperture of average visibility
• Developed with Terrain rendering in mind but can be used for other

things as well…

What are the applications?What are the applications?

• Non-deformable models
– Terrains
– Static scene elements

• Buildings
• Statues

• Dynamic spherical area light sources
– Hard & Soft shadows

• Applications where performance is critical and
rendering must still look realistic (but not
necessarily physically correct)

How does it work?How does it work?

• Ambient aperture lighting works in 2 stages
• Precomputation Stage

– Visibility function is computed at every point on mesh
• Per-vertex or per-pixel

– Visibility function is stored using a spherical cap
– Spherical cap stores an average, contiguous region of visibility

• A spherical cap is a portion of a sphere cut off by a plane (a hemisphere itself is a spherical
cap)

• Rendering Stage
– Spherical cap acts as an aperture
– Aperture is used to restrict incoming light so that it only enters the from visible

(un-occluded) directions
– Area light sources are projected onto the hemisphere and are clipped against

the aperture
– This determines how much of their light passes through the aperture

Precomputation stagePrecomputation stage

• The precomputation stage can be thought of as a two step
process:

• Step 1:
– Find visible area

• Area of hemisphere that is unoccluded by the surrounding scene
– This serves as the area of our aperture/spherical cap

• Step 2:
– Find average direction of visibility

• Just like finding a bent normal
• Average of all un-occluded rays fired from a given point

– This serves as the orientation of our aperture/spherical cap

Visible area (aperture size)Visible area (aperture size)

• For every point on the mesh (vertex/pixel):
– Cast a bunch of rays
– Determine what percentage of rays reach infinity (un-occluded)
– Multiply by 2PI (area of unit hemisphere)

• The average area of visibility used as aperture size
– We assume visible area is contiguous and circular region (i.e. a

spherical cap)

• Store arc length of the cap’s radius
– arc length of radius = acos(-area/2PI + 1)

• Single float value, stored per vertex/pixel

Visible direction (aperture orientation)Visible direction (aperture orientation)

• For every point on the mesh (vertex/pixel):
– Cast a bunch of rays
– Determine average direction for which rays reach infinity

(un-occluded)
• This is frequently referred to as a bent normal

• This gives you the average direction of visibility
• Use this for your aperture’s orientation
• A float3 per vertex/pixel

How to render using apertures?How to render using apertures?

• Project spherical area light source onto hemisphere
• Projected area light source covers some area of the

hemisphere
– Projected sphere forms a spherical cap, just like our aperture

• Find the intersection of the projected light’s spherical cap
and the aperture’s spherical cap

• Once the area of intersection is found, we know the portion
of the light source that passes through the aperture

Finding area of intersectionFinding area of intersection

• Intersection area of two spherical caps is a function of the arc lengths
of their radii (r0, r1) and the distance between their centroids (d)

• If d >= r0 +r1
– No intersection
– Thus area is 0

• If min(r0,r1) <= max(r0,r1)-d
– Fully intersected
– Use the area of the smallest cap
– Area of cap:

• Otherwise…

()()()0,1mincos22 rrππ −

Spherical cap intersectionSpherical cap intersection

• Oh no!
• After all our simplifications, we’re left with this

monster to solve!
• Let’s take a closer look at the intersection area

function…

*Simplified form of intersection area function given by [Tovchigrechko]

Intersection functionIntersection function

• Case 1 and 3 handled by our early outs
– Case 1 : Full intersection
– Case 3 : No intersection

• Intersection area decreases as caps move away from
each other

• Smooth falloff with respect to distance

0.05

0.2
0

0 0.4

0.1

d

10.80.6

0.2

0.15

Case: 1 Case: 2 Case: 3

Smoothstep saves the daySmoothstep saves the day

• Case 1: Full intersection
– Smoothstep returns 1

• Case 2: Partial intersection
– Smoothstep returns smooth falloff (depending on amount of overlap)
– Gives a smooth transition from full intersection to no intersection
– Scaled by area of smallest cap

• Case 3: No intersection
– Smoothstep returns 0

Area of smallest spherical cap

Quality ComparisonQuality Comparison

Top: Exact results Bottom: Approximation

Intersection area approximationIntersection area approximation

// Approximate the are of intersection of two spherical caps
// fRadius0 : First cap’s radius (arc length in radians)
// fRadius1 : Second caps’ radius (in radians)
// fDist : Distance between caps (radians between centers of caps)
float SphericalCapIntersectionAreaFast (float fRadius0, float fRadius1, float fDist)
{

float fArea;

if (fDist <= max(fRadius0, fRadius1) - min(fRadius0, fRadius1))
{

// One cap in completely inside the other
fArea = 6.283185308 - 6.283185308 * cos(min(fRadius0,fRadius1));

}
else if (fDist >= fRadius0 + fRadius1)
{

// No intersection exists
fArea = 0;

}
else
{

float fDiff = abs(fRadius0 - fRadius1);
fArea = smoothstep(0.0,

1.0,
1.0-saturate((fDist-fDiff)/(fRadius0+fRadius1-fDiff)));

fArea *= 6.283185308 - 6.283185308 * cos(min(fRadius0,fRadius1));
}
return fArea;

}

Don’t forget about our friend LambertDon’t forget about our friend Lambert

• Reflectance is determined by the area of intersection and Lambert’s Cosine
Law
– Find a vector to the centroid for the region of intersection
– This is estimated by averaging the aperture’s vector and the light’s vector
– Scale the intersection area by N.Vcentroid

• IntersectionArea * saturate(N.Vcentroid)

– This provides a Lambertian falloff as the light source approaches the horizon

• Just another approximation on top of all the others we’re making ☺
• Assumes the area above intersection’s centroid is about the same as the

area below the intersection’s centroid
– Negative error above the centroid cancels the positive error below the centroid

Ambient lightAmbient light

• We now have a function for finding direct lighting from area
light sources, but we’d like to incorporate some form of
ambient light to account for light scattered in from the sky

• Treat sky as if it were a giant area light behind the sun:
– Compute area light/aperture intersection
– If area of intersection is less that area of aperture, fill the missing

space with indirect “ambient light”
• For a terrain, use the average sky color (lowest MIP level of sky dome?)

– Blue during the day
– Redish-pink at sun set
– Black at night

• Works better than the standard constant ambient term
– Only applies to areas that aren’t being lit directly and aren’t totally

occluded from the outside world

Demo: TerrainDemo: Terrain

What are the benefits of this technique?What are the benefits of this technique?

• Area light sources
– Better than N.L with point light sources
– Hard shadows for small area light sources
– Soft shadows for large area lights sources

• Small storage requirements
– Just 4 floats per-vertex or per-pixel
– Or 3 floats if you store aperture orientation in tangent space and derive

z component in your shader

• Doesn’t require additional transforms
– Shadow maps require transforming model one or more extra times

• Very cheap to compute
– Just a handful of vertex shader or pixel shader instructions
– Gives pleasing results

What are the potential downfalls?What are the potential downfalls?

• Assumes visible region is contiguous and circular
– Sphere over plane (see example)
– Which way should visibility aperture point?
– Visible region is a band around the horizon, this is poorly approximated by a spherical cap

• Multiple light sources don’t occlude each other
– You’d have to compute area of overlap to make sure you don’t over light
– In practice this isn’t necessarily a huge issue (people expect 2 light sources to make things twice as bright)

• Assumes non-local light sources
– Light source can’t be between point being shaded and it’s blocker
– Results in incorrect shadowing

• Works well with terrains
– Terrains typically have nicely behaving visibility functions
– Occlusion is a band along the horizon
– Visibility region is generally a contiguous, circular region somewhere in the sky

Taking it to the next levelTaking it to the next level

• Multiple visibility apertures
– Fixes case where you’re in a room with multiple windows
– Multiple contiguous regions of visibility

• Occlusion “anti-apertures”
– Contiguous regions of occlusion
– Fixes sphere over plane case
– Spherical cap intersection gives amount of occlusion

rather than amount of light

Preprocessor optimizationsPreprocessor optimizations

• Speed up or even eliminate the preprocessing step
– Exploit the fact that Aperture can be computed using modified

ambient occlusion and bent normal preprocessors
• Google for:

– GPU accelerated ambient occlusion
• Improve preprocessing speed
• D3DX provides a GPU accelerated SH direct lighting function

– First coefficient can be used to approximate visible area
– Next 3 coefficients approximate average visible direction

– Dynamic ambient occlusion
• Eliminate the need to preprocess
• Allows for deformable meshes

ConclusionConclusion

• A method for shading using dynamic area light
sources

• Well suited for outdoor environments
– Static environment
– Spherical area light source: Sun
– Contiguous, circular regions of visibility

• Low computational complexity
• Very low storage cost

ReferencesReferences

• MAX, N. L. Horizon Mapping: Shadows for Bump-mapped
Surfaces. The Visual Computer 4, 2 (July 1988), 109-117.

• SLOAN, P.-P., KAUTZ, J., SNYDER, J., Precomputed
Radiance Transfer for Real-Time Rendering in Dynamic,
Low-Frequency Lighting Environments, SIGGRAPH 2002.

• TOVCHIGRECHKO, A. AND VAKSER, I.A. 2001. How
common is the funnel-like energy landscape in protein-
protein interactions? Protein Sci. 10:1572-1583

Questions?

Chris Oat

These slides are available for download:
www.ati.com/developer

