
Fast Approximations for lighting of Fast Approximations for lighting of
Dynamic ScenesDynamic Scenes

Alex Evans

Media Molecule Ltd

ContentsContents

• Differentiation in games rendering

• Blending techniques to exploit problem
constraints

• ‘Small world’ lighting using volumes
– Example 1: Irradiance slices

– Example 2: Signed Distance Functions

– Example 3: View aligned irradiance volumes

DifferentiationDifferentiation

• Need to visually differentiate product
– Especially in competitive world of games

• Everyone has the same HW to work with
– So need to be creative with constraints…
– ‘I need lots of lights’

• So go with a deferred renderer

– ‘I need lots of transparent objects’
• So don’t go with a deferred renderer

Ultimately all these algorithms are about servicing a look, art director or game
designer.

Exploiting techniques by blending themExploiting techniques by blending them

Always worth thinking of one technique in terms of another. eg first order SH are
kinda AO, and 1st order are like bent normals, oh right, zonal harmonics, oh right so
this relates to eg horizon maps and occlusion discs and form factors.
.... and having made those connections, gpu acceleration papers are popping up all
over the place and so you begin to exploit them.in the same way, intuitions gained
in one algorithm can be re-applied to another one, when they are thought about
using the same ‘language’, and get ‘blended’ ☺

Exploiting techniques by blending themExploiting techniques by blending them

Always worth thinking of one technique in terms of another. eg first order SH are
kinda AO, and 1st order are like bent normals, oh right, zonal harmonics, oh right so
this relates to eg horizon maps and occlusion discs and form factors.
.... and having made those connections, gpu acceleration papers are popping up all
over the place and so you begin to exploit them.in the same way, intuitions gained
in one algorithm can be re-applied to another one, when they are thought about
using the same ‘language’, and get ‘blended’ ☺

Exploiting techniques by blending themExploiting techniques by blending them

Always worth thinking of one technique in terms of another. eg first order SH are
kinda AO, and 1st order are like bent normals, oh right, zonal harmonics, oh right so
this relates to eg horizon maps and occlusion discs and form factors.
.... and having made those connections, gpu acceleration papers are popping up all
over the place and so you begin to exploit them.in the same way, intuitions gained
in one algorithm can be re-applied to another one, when they are thought about
using the same ‘language’, and get ‘blended’ ☺

Exploiting techniques by blending themExploiting techniques by blending them

Always worth thinking of one technique in terms of another. eg first order SH are
kinda AO, and 1st order are like bent normals, oh right, zonal harmonics, oh right so
this relates to eg horizon maps and occlusion discs and form factors.
.... and having made those connections, gpu acceleration papers are popping up all
over the place and so you begin to exploit them.in the same way, intuitions gained
in one algorithm can be re-applied to another one, when they are thought about
using the same ‘language’, and get ‘blended’ ☺

Exploiting techniques by blending themExploiting techniques by blending them

Always worth thinking of one technique in terms of another. eg first order SH are
kinda AO, and 1st order are like bent normals, oh right, zonal harmonics, oh right so
this relates to eg horizon maps and occlusion discs and form factors.
.... and having made those connections, gpu acceleration papers are popping up all
over the place and so you begin to exploit them.in the same way, intuitions gained
in one algorithm can be re-applied to another one, when they are thought about
using the same ‘language’, and get ‘blended’ ☺

Exploiting techniques by blending themExploiting techniques by blending them

Always worth thinking of one technique in terms of another. eg first order SH are
kinda AO, and 1st order are like bent normals, oh right, zonal harmonics, oh right so
this relates to eg horizon maps and occlusion discs and form factors.
.... and having made those connections, gpu acceleration papers are popping up all
over the place and so you begin to exploit them.in the same way, intuitions gained
in one algorithm can be re-applied to another one, when they are thought about
using the same ‘language’, and get ‘blended’ ☺

Exploiting techniques by blending themExploiting techniques by blending them

Always worth thinking of one technique in terms of another. eg first order SH are
kinda AO, and 1st order are like bent normals, oh right, zonal harmonics, oh right so
this relates to eg horizon maps and occlusion discs and form factors.
.... and having made those connections, gpu acceleration papers are popping up all
over the place and so you begin to exploit them.in the same way, intuitions gained
in one algorithm can be re-applied to another one, when they are thought about
using the same ‘language’, and get ‘blended’ ☺

Exploiting techniques by blending themExploiting techniques by blending them

Always worth thinking of one technique in terms of another. eg first order SH are
kinda AO, and 1st order are like bent normals, oh right, zonal harmonics, oh right so
this relates to eg horizon maps and occlusion discs and form factors.
.... and having made those connections, gpu acceleration papers are popping up all
over the place and so you begin to exploit them.in the same way, intuitions gained
in one algorithm can be re-applied to another one, when they are thought about
using the same ‘language’, and get ‘blended’ ☺

Exploiting techniques by blending themExploiting techniques by blending them

Always worth thinking of one technique in terms of another. eg first order SH are
kinda AO, and 1st order are like bent normals, oh right, zonal harmonics, oh right so
this relates to eg horizon maps and occlusion discs and form factors.
.... and having made those connections, gpu acceleration papers are popping up all
over the place and so you begin to exploit them.in the same way, intuitions gained
in one algorithm can be re-applied to another one, when they are thought about
using the same ‘language’, and get ‘blended’ ☺

Exploiting techniques by blending themExploiting techniques by blending them

Always worth thinking of one technique in terms of another. eg first order SH are
kinda AO, and 1st order are like bent normals, oh right, zonal harmonics, oh right so
this relates to eg horizon maps and occlusion discs and form factors.
.... and having made those connections, gpu acceleration papers are popping up all
over the place and so you begin to exploit them.in the same way, intuitions gained
in one algorithm can be re-applied to another one, when they are thought about
using the same ‘language’, and get ‘blended’ ☺

Exploiting techniques by blending themExploiting techniques by blending them

Always worth thinking of one technique in terms of another. eg first order SH are
kinda AO, and 1st order are like bent normals, oh right, zonal harmonics, oh right so
this relates to eg horizon maps and occlusion discs and form factors.
.... and having made those connections, gpu acceleration papers are popping up all
over the place and so you begin to exploit them.in the same way, intuitions gained
in one algorithm can be re-applied to another one, when they are thought about
using the same ‘language’, and get ‘blended’ ☺

Exploiting techniques by blending themExploiting techniques by blending them

Always worth thinking of one technique in terms of another. eg first order SH are
kinda AO, and 1st order are like bent normals, oh right, zonal harmonics, oh right so
this relates to eg horizon maps and occlusion discs and form factors.
.... and having made those connections, gpu acceleration papers are popping up all
over the place and so you begin to exploit them.in the same way, intuitions gained
in one algorithm can be re-applied to another one, when they are thought about
using the same ‘language’, and get ‘blended’ ☺

Exploiting techniques by blending themExploiting techniques by blending them

Always worth thinking of one technique in terms of another. eg first order SH are
kinda AO, and 1st order are like bent normals, oh right, zonal harmonics, oh right so
this relates to eg horizon maps and occlusion discs and form factors.
.... and having made those connections, gpu acceleration papers are popping up all
over the place and so you begin to exploit them.in the same way, intuitions gained
in one algorithm can be re-applied to another one, when they are thought about
using the same ‘language’, and get ‘blended’ ☺

Exploiting techniques by blending themExploiting techniques by blending them

Always worth thinking of one technique in terms of another. eg first order SH are
kinda AO, and 1st order are like bent normals, oh right, zonal harmonics, oh right so
this relates to eg horizon maps and occlusion discs and form factors.
.... and having made those connections, gpu acceleration papers are popping up all
over the place and so you begin to exploit them.in the same way, intuitions gained
in one algorithm can be re-applied to another one, when they are thought about
using the same ‘language’, and get ‘blended’ ☺

Exploiting techniques by blending themExploiting techniques by blending them

Always worth thinking of one technique in terms of another. eg first order SH are
kinda AO, and 1st order are like bent normals, oh right, zonal harmonics, oh right so
this relates to eg horizon maps and occlusion discs and form factors.
.... and having made those connections, gpu acceleration papers are popping up all
over the place and so you begin to exploit them.in the same way, intuitions gained
in one algorithm can be re-applied to another one, when they are thought about
using the same ‘language’, and get ‘blended’ ☺

Exploiting techniques by blending themExploiting techniques by blending them

Always worth thinking of one technique in terms of another. eg first order SH are
kinda AO, and 1st order are like bent normals, oh right, zonal harmonics, oh right so
this relates to eg horizon maps and occlusion discs and form factors.
.... and having made those connections, gpu acceleration papers are popping up all
over the place and so you begin to exploit them.in the same way, intuitions gained
in one algorithm can be re-applied to another one, when they are thought about
using the same ‘language’, and get ‘blended’ ☺

Exploiting techniques by blending themExploiting techniques by blending them

Always worth thinking of one technique in terms of another. eg first order SH are
kinda AO, and 1st order are like bent normals, oh right, zonal harmonics, oh right so
this relates to eg horizon maps and occlusion discs and form factors.
.... and having made those connections, gpu acceleration papers are popping up all
over the place and so you begin to exploit them.in the same way, intuitions gained
in one algorithm can be re-applied to another one, when they are thought about
using the same ‘language’, and get ‘blended’ ☺

Exploiting techniques by blending themExploiting techniques by blending them

Always worth thinking of one technique in terms of another. eg first order SH are
kinda AO, and 1st order are like bent normals, oh right, zonal harmonics, oh right so
this relates to eg horizon maps and occlusion discs and form factors.
.... and having made those connections, gpu acceleration papers are popping up all
over the place and so you begin to exploit them.in the same way, intuitions gained
in one algorithm can be re-applied to another one, when they are thought about
using the same ‘language’, and get ‘blended’ ☺

Getting the lookGetting the look

• To plagiarise from Chris’s talk on gooey
material rendering:
– [Choose techniques which are] Computationally

efficient:
• Forget about being physically correct

• Focus on approximating the right “look”

• This is a great summary of the motivations
behind the following 3 case studies.

Case study: Fake GI in small worldsCase study: Fake GI in small worlds

• Bounce light effects aid realism greatly
– But come at a cost. The real tricky part is always

the same: efficient computation of visibility point
to point or area to area is hard

– Different constraints make it tractable:
• PRT – static scenes

• Irradiance Caching / Vertex lighting – reduce number of
samples of hard-to-evaluate visibility function

8/8/2006

23

Unusual constraint: Unusual constraint: ‘‘Small worldSmall world’’

• If the world was small…
– I could compute/store information about the whole world,

dynamically

– I could store that data in GPU friendly data structures
• Volume textures!

– Pros/cons:
• May make traditionally hard queries like visibility, fast

• Simpler to represent scene-wide effects rather than just 'light interacts
with surface‘

• May be low or even constant cost regardless of scene
complexity

– This is one of the most useful properties of PRT for games.

Example 1: Irradiance Slices Example 1: Irradiance Slices

• Goal: mixed soft and sharp shadows from dynamic
planar light source with no precomputation

8/8/2006

25

Example 1: Irradiance Slices Example 1: Irradiance Slices

• Inspired by the ‘repeated zoom and blur’ used in
every MP3 player ever

8/8/2006

26

Irradiance slices: the setupIrradiance slices: the setup

– Imagine a single, large area light

• To shade a point, we want to average many ‘random’ rays

– All ending at the light. They either get there, or they don’t

Key observation: rays near the bottom…
…pass through many of the same places rays
near the top did

Irradiance slices: the ideaIrradiance slices: the idea

– So, slice world parallel to light
• Store a texture at each slice

Irradiance slices: the ideaIrradiance slices: the idea

Trace rays from each plane in turn, starting nearest the light
If a ray gets to the previous plane, stop tracing

And just return the result at the previous plane

DemoDemo

• That was pretty abstract so before I describe how
to do it on GPU, have a demo…
– The artefacts as you move the light around

• Are caused by only updating ¼ of the slices per frame.

– Demo written for a 9600 mobility– on modern kit, no need any
more!

– Features this has that are nice:
• Sharp and soft shadows can intermix correctly

• Real inner and outer shadow penumbras

• Completely dynamic. Fixed cost. Low geometry Cost

Irradiance slices on the GPUIrradiance slices on the GPU

– How to represent the scene geometry?
• Render a front and back zbuffer for each slice

– Using MRT’s, with min-blending, can render 16 per pass

– Take care over slices that are inside geometry

Irradiance slices on the GPU 2Irradiance slices on the GPU 2

– Now we have for each slice,

• A min and max z. so tracing a ray within a slice…

– …is just a matter of comparing lots of z’s

– This is all an approximation!

– But it’s a good one.

Irradiance slices on the GPU 3Irradiance slices on the GPU 3

• Each slice is stored as a texture…
• A PS2.0 shader can trace one ray per pixel

– We trace a 4x4 block and average by downsampling

• Sadly we can’t write directly to a volume texture

– So the slices are laid out in 2d on a huge 2048x2048 map

• Then at render time, shading is just a texture
lookup!

• Just find nearest point in slice volume and sample

– Will become more efficient as GPUs get more
orthogonal

ThatThat’’s it for Irradiance Slicess it for Irradiance Slices

• Post-Mortem:
– Fixed cost, huge pixel fill rate

• but great results. Not practical…. Yet

– Main source of error is z-slice approximation to
scene geometry

• But it allows completely dynamic geometry

– It’s only one light at a time
• Could implement a system using a grid of slices

– Allows arbitrary # of lights in fixed time

› Also bounce light! (Every wall can be a light)

Example 2: Skylight for dynamic scenesExample 2: Skylight for dynamic scenes

• The goal:

Example 2: Example 2: SDFSDF’’ss are your friendare your friend

• It would be really handy to know for any point
in space, how far are we from the nearest
object?
– Used for medial axis computation, computer vision,

sphere tracing in parallax mapping,….

• The Signed Distance Function stores exactly
this information.

Quick SDF definitionQuick SDF definition

• For all points in space we define a S(P) such that

– S(P) = 0 when it is on the surface of a body

– S(P) > 0 when it is inside any body

– S(P) < 0 when it is outside all bodies

Can use many distance metrics. It turns out for our purposes pretty much any old
distance function will do – in particular a gaussian blurred version of the binary
image actually accentuates the affect we want, namely surface curvature.

Using Using SDFSDF’’ss to measure surface to measure surface
curvaturecurvature

• We want that ‘AO’ look – where regions
inside creases and valleys receive less sky
light.
– Surface curvature is a great start.

SDFSDF’’ss for sky lighting: the overviewfor sky lighting: the overview

• We stretch a low resolution (128 cubed)
volume over the entire scene
– This will store the SDF, which will be updated on

the fly in a separate pass on the GPU

– At render time, objects simply sample the global
volume texture and use the SDF values to
compute surface curvature.

• Many more details and HLSL code in the course
notes.

Which looks likeWhich looks like……

Not a bad start. But this is still direction free, there is no sense of an up/sky vector.
this is a case where experimentation and messing around can really get you a long
way.

SDF as occlusion mapSDF as occlusion map

• If we sample SDF at a distance ‘d’ from
surface, we expect result ‘d’ (or –d)…
– Unless there’s another object in the way.

A step back: whatA step back: what’’s going on here?s going on here?

• The SDF is really serving as a easy-to-sample
measure of the ‘occludedness’ of points in space
– We’re not actually making explicit use of it’s distance

properties

– Suggests an analogy with deep shadow maps: we just get a
blurry picture of how occluded a particular point is.

– What if we were to trace rays through this
volume?

The intuition is: the SDF here is really acting for us like a measure of occludedness

Tracing rays in the SDFTracing rays in the SDF

• If we sample the SDF at several points along
a ray,
– and sum the results,
– treating them like extinction coefficients in a

participating media / deep shadow map style…
– And pre-blur the SDF in a pyramid of map-maps so

that objects have an ‘affect’ on a larger and larger
region depending on the pyramid level..

• We can get a really nice approximation to sky light.

This is the ‘blender’ idea I was talking about in the opening. Despite having arrived
at this point via the (well studied) idea of SDF’s, we’re now in territory that has a lot
in common with deep shadow maps, participating media, volume rendering, and
irradiance volumes. Which is all good, because we can take intuitions from there
and apply them here.

Tracing rays in the SDFTracing rays in the SDF

• In the absence of occluders we expect

• So in the shader we do:

• When you skew ‘N’ towards the sky
– So that you’re tracing rays slightly upwards,

– Upward facing faces naturally get a brighter, less
occluded shade. And we complete the ‘AO’ look
we wanted.

SDF(P + diN) = −
i= 0

n

∑ di
i= 0

n

∑

C = exp(k SDF(P + diN)+ di∑)

Picture & DemoPicture & Demo

Computing the SDF on the GPUComputing the SDF on the GPU

• If the scene is made up of rigid bodies…
– Their local SDF’s are constant and can be precomputed or

analytically computed by a pixel shader.

• The precomputed SDF’s can be compressed according to the
physical properties of the object: as height fields, radial (cube-
map) type representations, or even as volume textures.

– Then it’s simply a matter of ‘min-blending’ the rotated SDF
for each body, into the global SDF volume texture

• More details in the course notes.

Doing it on the GPU: slices againDoing it on the GPU: slices again……

• Due to limitations of the API used, we need
to render the volume texture for the SDF as
slices on a 2D texture:

A vertex shader computes the 4 vertices of the eges of the most aligned axis of the
OBB of the object to be rendered, then a pixel shader evluates the SDF. ‘min
blending’ allows multiple objects to be composited together into the SDF, and then
mip map generation gives us the pyramid of blurred volumes used in the sampling
of the volume. More details in the course notes.

Colour Bleeding and wrap upColour Bleeding and wrap up

• By computing SDF’s for each colour channel, and offsetting
each object’s SDF values by their surface albedo,
– Fake bounce light effects are introduced ‘automatically’

• The bounce light isn’t physically correct, or shadowed – but gives visual
queues which viewers are happy to accept as secondary diffuse
reflections.

• This technique gives pleasing ‘AO’ and sky-type lighting at very
low cost even for high geometric complexity scenes
– But the approximations used are so coarse that the unphysical

nature of the lighting makes it tricky to use in complex scenes

Example 3: View aligned Irradiance Example 3: View aligned Irradiance
VolumesVolumes

• Goal: fast evaluation of lighting from multiple
moving light sources in a dynamic scene
– Constraint: Scene has low depth complexity w.r.t.

the eye/camera – ‘2.5D’

– Constraint 2: Has to run really quickly and have
modest memory usage.

Irradiance Volumes Irradiance Volumes

• Many games use irradiance
volumes to store (and
sample) the light flowing
through any point in a
scene
– Normally they are world

aligned and precomputed at
coarse resolution

– They store the irradiance
flowing in any direction,
often compressed using a
spherical harmonic
representation

View aligned Irradiance VolumesView aligned Irradiance Volumes

• In a dynamic scene, it’s not possible to precompute
the irradiance volume
– So we are going to recompute it on the fly using the GPU, at

low resolution, based on a potentially large number of light
emitters

• Since we’re recomputing it every frame,
– It makes sense to compute it in screen space.

– In this example, the target constraint was for a ‘2.5D’ thin
world, so a small number (16) of slices are used, parallel to
the screen. They are evenly spaced in post projective
space, ie evenly spaced in ‘w’. (1/z)

The setupThe setup

• Here’s a view of the example scene, as seen
in a game editor:

Rendering of the lights into the volumeRendering of the lights into the volume

• We additively composite each visible light into the volume by
intersecting its OBB with the slices of the volume.

• Irradiance is a function of both position and direction…
– I(p,ω)

• The dependence on direction of the irradiance at a given point
is often represented using spherical harmonics
– We can get away with a simpler approximation: we first render just

the average Irradiance over all directions, at each point in space…

– Directional variation is then approximated from the grad (∇) of this
‘average irradiance’ field.

The scene lit by a single point sourceThe scene lit by a single point source

Irradiance volume Irradiance volume visualisationvisualisation

Using Using ∇∇ to approximate directional to approximate directional
dependencedependence

Results (no sun)Results (no sun)

Results (with sun)Results (with sun)

Video demoVideo demo

View aligned Irradiance Volumes wrap upView aligned Irradiance Volumes wrap up

• The algorithm runs very quickly, is simple to
implement and works well on 2.5D scenes
– Care needs to be taken to avoid aliasing in the sampling of

a volume with so few ‘slices’

• This could be achieved by some degree of filtering, blurring at
light render time, or super-sampling of the volume at surface
render time

– Interesting potential extension: shadows

• By integrating the slice based ‘radial zoom and blur’ from example
1, occluders could be rendered into the volume and then
iteratively ‘smeared’ outwards according to the light flow direction.

ConclusionConclusion

• 3 novel techniques were presented using volume
representations of small scenes to ‘get a nice look’
– 1 – repeated zooming and blurring of slices through the

scene can give convincing penumbra effects

– 2 – a GPU updated volume texture was used to rapidly
compute occlusion information from a ‘skylight’ to give a
nice AO look with some bounce light effects

– 3 – the gradient of a screen aligned ‘irradiance volume’ was
used to rapidly compute lighting from a potentially large
number of moving light sources.

Questions?Questions?

• Questions?

• References & more detail on example 2
– Are in the course notes.

• Thanks
– Natasha Tatarchuk @ ATI
– Media Molecule

• for letting me out during crunch

lex lex mediamolecule.com

