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Chapter 25

Collision Detection

“To knock a thing down, especially if it is cocked at an arrogant
angle, is a deep delight to the blood.”

—George Santayana

Collision detection (CD) is a fundamental and important ingredient in many computer
graphics applications. Areas where CD plays a vital role include virtual manufactur-
ing, CAD/CAM, computer animation, physically based modeling, games, flight and
vehicle simulators, robotics, path and motion planning (tolerance verification), assem-
bly, and almost all virtual reality simulations. Due to its huge number of uses, CD
has been and still is a subject of extensive research.

Collision detection is part of what is often referred to as collision handling, which
can be divided into three major parts: collision detection, collision determination,
and collision response. The result of collision detection is a boolean saying whether
two or more objects collide, while collision determination finds the actual intersections
between objects; finally, collision response determines what actions should be taken
in response to the collision of two objects.

Consider an old-style clock consisting of springs and cog-wheels. Say this clock
is represented as a detailed, three-dimensional model in the computer. Now imagine
that the clock’s movements are to be simulated using collision detection. The spring is
wound and the clock’s motion is simulated as collisions are detected and responses are
generated. Such a system would require collision detection between possibly thousands
of pairs of objects. Another challenge would be to simulate all the ants and all the
pine needles in an anthill. A brute-force search of all possible collision pairs would be
incredibly inefficient and so is impractical under these circumstances. An example of
complex collision detection is shown in Figure 25.1.

To cope with large scenes, it is common to divide a collision detection system
into three phases. Broad phase CD works on a per object level and finds pairs of
objects whose BVs overlap (Section 25.1). Mid phase CD (Section 25.2) continues the
work and detects parts of two objects that may overlap, and finally, narrow phase CD
(Section 25.3) works on leaves of primitives or on convex parts of objects. These three
phases can be used together in a large CD system.
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2 25. Collision Detection

Figure 25.1. Rigid-body collision detection using tens of thousands of small geometrical objects,
mostly boxes, torii, and an occasional ragdoll. (Images generated using the PhysX Kapla demo,
courtesy of NVIDIA Corporation.)

In Section 25.4 we discuss simple and extremely fast collision detection techniques
that are useful in some scenarios. The main idea is to approximate a complex ob-
ject using a set of line segments. These line segments are then tested for intersection
with the primitives of the environment. This technique is sometimes used in games.
Another approximative method is described in Section 25.5, where a BSP tree rep-
resentation of the environment is used, and a cylinder may be used to describe a
character. However, all objects cannot always be approximated with line segments or
cylinders, and some applications may require more accurate tests.

Time-critical collision detection is a technique for doing approximate collision de-
tection in constant time, and is treated in Section 25.6. Then follows sections on
deformable models, continuous CD, collision response, and finally, how to handle par-
ticles, in Section 25.10.

It must be pointed out that performance evaluations are difficult in the case of CD,
since the algorithms are sensitive to the collision scenarios, and there is no algorithm
that performs best in all cases [33]. Also, note that CD is often performed on the CPU
side, but due to the generality of GPUs, all algorithms can be executed on the GPU
as well. In general, algorithms need to be adapted to the particular architecture’s
memory system and feature set in order to maximize performance.

To conclude, we present some dynamic intersection tests. Determining whether
two moving objects collide during a given duration adds literally another dimension
to the problem: time. This final section provides common tests for various primitive
combinations and tools for deriving more complex interactions.
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Figure 25.2. A collision detection system that is fed object transformations using some kind of
simulation. All objects in a scene are then processed by broad phase CD in order to quickly find
objects pairs whose bounding volumes overlap. Next, the mid phase CD continues to work on pairs of
objects to find leaves of primitives or convex parts that overlap. Finally, the CD system performs the
lowest level operations in the narrow phase, where one can compute primitive-primitive intersections
or use distance queries and then feed the result to collision response.

25.1 Broad Phase Collision Detection
In this section, we describe several broad phase CD algorithms. However, first we
illustrate the broad, mid, and narrow phase of CD in Figure 25.2, which is a two-
level CD system [16] where the last phase has been split up into a mid and a narrow
phase. The target is large-scale environments with multiple objects in motion. The
broad phase of this system reports potential collisions among all the objects in the
environment. Next, the mid phase works on pairs of objects and attempts to find
leaves of primitives that potentially overlap or convex parts that overlap, for example.
The narrow phase computes primitive-primitive intersections or uses distance queries
to make sure that objects do not penetrate each other. Finally, collision response
(Section 25.9) is computed, whose result is fed into a simulation subsystem that can
compute final transforms for each object.

Since a scene may contain thousands of moving objects, a good CD system must
handle such situations well. If the scene contains n moving and m static objects, then
a naive method would perform

nm+

(
n
2

)
= nm+ n(n− 1)/2 (25.1)

object tests for each frame. The first term corresponds to testing the number of
static objects against the dynamic (moving) objects, and the last term corresponds to
testing the dynamic objects against each other. The naive approach quickly becomes
expensive as m and n rise. This situation calls for smarter methods, which are the
subject this section.
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The goal of each phase is to minimize the amount of work passed to the subsequent
phase, i.e., we want to minimize pairs of objects, primitives, convex parts, etc., that
are fed to the next phase. At the first phase, testing is done on the object level and
it is therefore often called broad phase CD.

Most algorithms for this phase start by enclosing each object in a BV, and then
apply some technique to find all BV/BV pairs that overlap. A simple approach is to
use an axis-aligned bounding box (AABB) for each object. To avoid recomputing this
AABB for an object undergoing rigid-body motion, the AABB is adjusted to be a
fixed cube large enough to contain the object in any arbitrary orientation. The fixed
cubes are used to rapidly determine which pairs of objects’ bounding volumes are
disjoint. Sometimes it may be better to use dynamically resized AABBs, which are
fast to recompute for oriented boxes, spheres, and capsules, for example.

Spheres can be used instead of fixed cubes. This is reasonable, since the sphere
is the perfect BV with which to enclose an object at any orientation. It is also
possible to use the apex map [53] (Section 22.13.4). In the following, we describe
three algorithms for broad phase CD, namely, sweep-and-prune, using grids, and using
BVHs. An entirely different method is to use the loose octree structure presented in
Section 19.1.3.

25.1.1 Sweep-and-Prune
We assume that each object has an enclosing AABB. In the sweep-and-prune tech-
nique [3, 62, 93], temporal coherence, which often is present in typical applications, is
exploited. Temporal coherence means that objects undergo relatively small (if any)
changes in their position and orientation from frame to frame (and so it is also called
frame-to-frame coherence).

Lin [62] points out that the overlapping bounding box problem in three dimensions
can be solved in O(n log2 n+k) time (where k is the number of pairwise overlaps), but
it can be improved upon by exploiting coherence and so can be reduced to O(n+ k).
However, this assumes that the animation has a fair amount of temporal coherence.

If two AABBs overlap, all three one-dimensional intervals (formed by the start and
end points of AABBs) in each main axis direction must also overlap. Here, we will
describe how all overlaps of a number of one-dimensional intervals can be detected
efficiently when the frame-to-frame coherency is high. Given that solution, the three-
dimensional problem for AABBs is solved by using the one-dimensional algorithm for
each of the three main axes.

Assume that n intervals (along a particular axis) are represented by si and ei,
where si < ei and 0 ≤ i < n. These values are sorted in one list in increasing order.
This list is then swept from start to end. When a start point si is encountered,
the corresponding interval is put into an active interval list. When an endpoint is
encountered, the corresponding interval is removed from the active list. Now, if the
start point of an interval is encountered while there are intervals in the active list,
then the encountered interval overlaps all intervals in the active list. This is shown in
Figure 25.3.
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Figure 25.3. At the top, the interval I4 is encountered (at the point marked (a)) when there is only
one interval in the active list (I3), so it is concluded that I4 and I3 overlap. When I2 is encountered,
I4 is still in the active list (since e4 has not been encountered yet), and so I4 and I2 also overlap.
When e4 is encountered, I4 is removed (at the point marked (b)) from the active list. At the bottom,
I2 has moved to the right, and when the insertion sort finds that s2 and e4 need to change places, it
can also be concluded that I2 and I4 do not overlap any longer. (Illustration after Witkin et al. [93].)

This procedure would take O(n log n) to sort all the intervals, plus O(n) to sweep
the list and O(k) to report k overlapping intervals, resulting in an O(n log n + k)
algorithm. However, due to temporal coherence, the lists are not expected to change
much from frame to frame, and so a bubble sort or insertion sort [48] can be used
with great efficiency after the first pass has taken place. These sorting algorithms sort
nearly-sorted lists in an expected time of O(n).

Insertion sort works by building up the sorted sequence incrementally. We start
with the first number in the list. If we consider only this entry, then the list is sorted.
Next, we add the second entry. If the second entry is smaller than the first, then we
change places of the first and the second entries; otherwise, we leave them be. We
continue to add entries, and we change the places of the entries, until the list is sorted.
This procedure is repeated for all objects that we want to sort, and the result is a
sorted list.

To use temporal coherence to our advantage, we keep a boolean for each possible
pair of intervals. For large models, this may not be practical, as it implies an O(n2)
storage cost. Instead, a hash map could be used to work around this problem. A
specific boolean is TRUE if the pair overlaps and FALSE otherwise. The values of the
booleans are initialized at the first step of the algorithm when the first sorting is done.
When the status of an interval pair changes, the boolean is inverted. This is also
illustrated in Figure 25.3.



6 25. Collision Detection

We can create a sorted list of intervals for all three main axes and use the preceding
algorithm to find overlapping intervals for each axis. If all three intervals for a pair
overlap, their AABBs (which the intervals represent) also overlap; otherwise, they do
not. The expected time is linear, which results in an O(n + k)-expected-time sweep-
and-prune algorithm, where, again, k is the number of pairwise overlaps. If all an
object pair overlaps on all three axes (i.e., all three booleans are true), then that pair
could be added to a list of colliding pairs for fast access by later stages. This makes
for fast overlap detection of the AABBs. Note that this algorithm can deteriorate to
the worst expected performance for the sorting algorithm, which may be O(n2). This
can happen when clumping occurs. A common example is when a large number of
objects are lying on a floor. If the z-axis is pointing in the normal direction of the
floor, we get clumping on the z-axis. One solution would be to skip the z-axis entirely
and only perform the testing on the x- and y-axes [25]. In many cases, this works
well. Liu et al. [63] present a parallel version of SAP, where the sweep direction is
optimized as well. Their algorithm targets the GPU, and there is code online.

25.1.2 Grids
While grids and hierarchical grids are best known as data structures for ray tracing
acceleration, they can also be used for broad phase collision detection [88]. In its
simplest form, a grid is just an n-dimensional array of non-overlapping grid cells that
cover the entire space of the scene. Each cell is therefore a box, where all boxes have
the same size. From a high level, broad phase CD with a grid starts with insertion
of all the objects’ BVs in our scene into the grid. Then, if two objects are associated
with the same grid cell, we immediately know that the BVs of these two objects are
likely to overlap. Hence, we perform a simple BV/BV overlap test, and if they collide,
we can proceed to the second level of the CD system. To the left in Figure 25.4, a
two-dimensional grid with four objects is shown.

To obtain good performance, it is important to choose a reasonable grid cell size.
This problem is illustrated to the right in Figure 25.4. One idea is to find the largest
object in the scene, and make the grid cell size large enough to fit that object at all
possible orientations [25]. In this way, all objects will overlap at most eight cells in
the case of a three-dimensional grid.

Storing a large grid can be quite wasteful, especially if significant portions of the
grid are left unused. Therefore, it has been suggested that spatial hashing could be
used instead [25, 86, 88]. In general, each grid cell is mapped to an index in a hash
table. All objects overlapping with a grid cell are inserted into the hash table, and
testing can continue as usual. Without spatial hashing, we need to determine the size
of the AABB enclosing the entire scene before memory can be allocated for the grid.
We also must limit where objects can move, so they do not leave these bounds. These
problems are avoided altogether with spatial hashing, as objects can immediately be
inserted into the hash table, no matter where they are located.
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Figure 25.4. Left: a low-resolution two-dimensional grid with four objects. Note that since the ellipse
and the star overlap a shared grid cell, these objects have to be tested using a BV/BV test. In this
case, they do not collide. The triangle and the star also overlap a shared grid cell, and they do in fact
collide. Right: a higher-resolution grid. As can be seen, the star overlaps with many grid cells, which
can make this procedure expensive. Also note that there are many smaller objects where clumping
occurs, and this is another possible source of inefficiency.

As illustrated in Figure 25.4, it is not always optimal to use the same grid cell size
in the entire grid. Another option is to use hierarchical grids. In this scheme several
different nested grids with different cell sizes are used, and an object is inserted in only
the grid where the object’s BV is (just) smaller than the grid cell. If the difference
in grid cell size between adjacent levels in the hierarchical grid is exactly two, this
structure is quite similar to an octree. There are many details worth knowing about
when implementing grids and hierarchical grids for CD, and we refer to the excellent
treatment of this topic by Ericson [25] and the article by Pouchol et al. [76].

25.1.3 Bounding Volume Hierarchies
Bounding volume hierarchies (BVHs) were described in Section 19.1.1 as a means
to accelerate rendering using view frustum culling. How to build a BVH and how
to perform collision testing using these are described in detail in Section 25.2. The
broad phase can also be implemented using a BVH. Assume objects move every frame
and that an AABB exists for each object in a scene, i.e., each leaf node contains an
AABB and its underlying object. The BVH can be built rapidly using these AABBs.
The maximum number of children is usually adjusted to fit the underlying target
architecture, e.g., using 8 children if the target SIMD width is 8.

After the BVH has been built, it is possible to detect which object pairs overlap,
i.e., which leaf nodes’ AABBs overlap. One method is to hierarchically test each
object’s AABB against the BVH. If the object’s AABB does not overlap a node’s BV
during traversing the BVH, then processing is terminated for that node’s subtree. If
instead there is an overlap, the recursion continues down. To find out what D, in
Figure 25.5, overlaps, we start testing at the root, which it will always overlap. It
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B
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F

G

Figure 25.5. In this BVH, consisting of axis-aligned bounding boxes, there are 7 nodes, denoted A
through G. A is the root and D-G are leaves, while B and C are internal nodes. See the text for two
different methods to detect which leaf nodes overlap.

does not overlap C, so no further testing is needed in that subtree. Testing continues
in B, which D always overlap since it is a child in B’s subtree. Finally, D is tested
against E, which indicates that D does not overlap with any other object. Next, we
determine if E overlaps any other object. It overlaps A and B since E is in their
subtrees, but it also overlaps C. Traversing down in B, we discover that E does not
overlap anything there. In C, however, we will find that E overlaps F but not G.
With this method, we test a leaf node X, and if recursion reaches a leaf node whose
AABB, Y , overlaps with X then the pair (X,Y ) is added to a list of overlapping pairs
of objects. Note that some care has to be taken so that, for example, we do not add
both (E,F ) and (F,E) to the list.

Alternatively, one can make a BVH versus BVH test, where the BVH is tested
against itself and recursion is terminated when two AABBs do not overlap. If a pair
of leaf nodes’ AABBs (corresponding to two different objects) are found to overlap,
then this pair is added to a list which is then fed to the next phase. Note that care
has to be taken so that we do not report overlap between an AABB and itself. Using
Figure 25.5, testing starts at the root, and since a node will always overlap itself, we
descend into A and process B and C. B overlaps itself, and we descend into B only
to find that D and E do not overlap. We also descend into C, and find that F and
G overlap, so (F,G) is added to the list of overlapping pairs. Next, since B and C
overlap, we must test all B’s children against all of C’s children. Here, we find that
E and F overlap, and add that pair to the list as well.

An important advantage of approaches using a BVH is that we build only a single
data structure over the objects’ AABBs, and this BVH can then be used for broad
phase CD, view frustum culling, occlusion culling, and ray tracing, for example.
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25.2 Mid Phase Collision Detection
After the broad phase, we assume that two objects are processed and that we want
to find overlapping parts of these objects. To that end, this section describes general,
hierarchical bounding volume collision detection algorithms. The models can undergo
rigid-body motion, i.e., rotation plus translation, or even more general types of de-
formation (Section 25.7). These methods provide efficient bounding volumes (BVs),
in that they try to create tight fitting volumes for a set of geometry. Smaller BVs
improve the performance of these algorithms. Note also that meshes simplified from
the original meshes used for rendering are often used to reduce the complexity and the
cost of CD [73]. For simple colliders—such as boxes, spheres, and capsules—processing
can skip ahead to the narrow phase.

This section will present some general ideas and methods for detecting collisions
between two given models using bounding volume hierarchies (BVHs). Two elements
shared by these algorithms are that they build a hierarchical representation of each
model using bounding volumes, and that the high-level code for a collision query is
similar, regardless of the kind of BV being used.

25.2.1 BVH Building
Initially, a model is represented by several primitives, which we assume are triangles in
this section, but in general, they can be any type of primitive. Since each model should
be represented as a hierarchy of some kind of bounding volumes, methods must be
developed that build such hierarchies with the desired properties. A hierarchy that is
commonly used in the case of collision detection algorithms is a data structure called
a k-ary tree, where each node may have at most k children (Section 19.1). Many
algorithms use the simplest instance of the k-ary tree, namely the binary tree, where
k = 2. However, with current architectures, a higher value of k may be preferred
(e.g., to match a particular SIMD width, or to minimize pointer indirection). At each
internal node, there is a BV that encloses all its children in its volume, and at each
leaf are one or more primitives. The bounding volume of an arbitrary node (either an
internal node or a leaf), A, is denoted ABV , and the set of children belonging to A is
denoted Ac.

There are four main ways to build a hierarchy: a bottom-up method, an incremental
tree-insertion, a top-down approach, or a linear BVH method. To create efficient, tight
structures, the areas or the volumes of the BVs typically are minimized wherever
possible [31, 47]. A problem with using the volume can be seen with a floor object, for
example. The floor has no volume, so would have no size or influence by itself when
using this metric. All single axis aligned polygons would then have the same influence,
i.e., none at all, regardless of size. There is evidence showing that surface area is the
better heuristic most of the time, while volume can give better performance when
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Figure 25.6. On the left, a binary tree with three nodes is shown. We assume that only one primitive
is stored at each leaf. Now we wish to insert a new node, named N . This node has a bounding
volume (BV) and a primitive that BV encloses. Therefore, the node will be inserted as a leaf node.
In this example, say we find that the total tree volume is smaller if we insert N at the node called C
(rather than at B). Then a new parent node P is created that encloses both C and the new node N .

objects with large surfaces are facing each other [95].1 As such, we will use surface
area for the remainder of this chapter, but recall that sometimes volume can be better.

The first of these methods, bottom-up, starts by combining several primitives and
finding a BV for them. These primitives should be located close together, which can
be determined by using the distance between the primitives. Then, either new BVs
can be created in the same way, or existing BVs can be grouped with one or more BVs
constructed in a similar way, thus yielding a new, larger parent BV. This is repeated
until only one BV exists, which then becomes the root of the hierarchy. In this way,
closely located primitives are always located near each other in the bounding volume
hierarchy.

The incremental tree-insertion method starts with an empty tree. Then all other
primitives and their BVs are added one at a time to this tree. This is illustrated in
Figure 25.6. To make an efficient tree, an insertion point in the tree must be found.
This point should be selected so that the total tree volume increase is minimized. A
simple method for doing this is to descend to the child that gives a smaller increase
in the tree. This kind of algorithm typically takes O(n log n) time. Randomizing the
ordering in which primitives are inserted can improve tree formation [31].

The top-down approach, which is a popular method, starts by finding a BV for all
primitives of the model, which then acts as the root of the tree. Then a divide-and-
conquer strategy is applied, where the BV is first split into k or fewer parts. For each
such part, all included primitives are found, and then a BV is created in the same
manner as for the root, i.e., the hierarchy is created recursively. It is most common
to find some axis along which the primitives should be split, and then to find a good
split point on this axis. In Section 22.4 geometric probability is discussed, and this
can be used when searching for a good split point, which will result in better BVHs.
In ray tracing, the surface area heuristic (SAH) is used, which is formulated as

C(n) =

{
CiA(n) + C(nl) + C(nr), n ∈ I
CtA(n)N(n), n ∈ L, (25.2)

1In writing this chapter, we thought about this question and believe the chance of two objects
intersecting is relative to the surface area of the Minkowski difference, and so depends on both objects.
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Figure 25.7. Left: the Morton curve is shown as the fat, Z-shaped curve. A triangle is assigned to
the Morton code, whose center of the cells overlap the centroid of the triangle. The triangles are
sorted according to the Morton codes (upper right). The final tree is shown to the lower left, which
is created by splitting the sorted list hierarchically.

where C(n) is the SAH cost of a node n, and nl and nr are the left and right children
of n. The surface area of the bounding volume n is denoted A(n), and Ci is the cost
for traversing an internal node, while Ct is the cost of ray/triangle intersection. Also,
the set of all internal nodes are denoted I and all leaf nodes are denoted L. N(n) is
the number of triangles in a leaf node. Note that the first line in the equation above
dictates cost of making n an internal node and the second line is the cost of making it
a leaf node. Ideally, the first line of the equation should be minimized and this is done
by searching along the x−, y−, and z-axes for the best split point. Embree [90] has
many state-of-the-art methods implemented for this. Also, at each point, one chooses
either to build an internal node or make a leaf node based on which is least expensive.
Since area is used in the SAH metric, it is not ideally suited for collision detection.
However, the function A(n) can be replaced for V (n), which computes volume instead.

Note that a potential advantage of the top-down approach is that a hierarchy can be
created lazily, i.e., on an as-needed basis. This means that we construct the hierarchy
only for those parts of the scene where it is actually needed. But since this building
process is performed during runtime, whenever a part of the hierarchy is created, the
performance may go down significantly. This is not acceptable for applications such
as games with real-time requirements, but may be a great time and memory saver for
CAD applications or offline calculations such as path planning, animation, and more.

The linear BVH method [59] was originally targeting building BVHs on the GPU,
but excels on CPUs as well. The core idea is illustrated in Figure 25.7. First a box
is found around all triangles and at that point the triangles are stored in an array
in some order. Next, a Morton code (Section 23.8), which is an integer, is assigned
to each triangle based on its centroid. After that the triangles are sorted according
to their Morton codes. Finally, the list is split hierarchically, and at each step an
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internal node is created that bounds its triangles. This process stops when there are
no triangles left in a sublist or when there are a small number that can fit in a leaf.
Karras and Aila [45, 46] provide an overview of the many research papers on this
topic and present highly optimized versions that works for BVHs, octrees, and kd
trees based on quickly building the BVH by interpreting the sorted Morton codes as
a radix tree. Apetrei [1] improves on Karras’ technique by merging two of the passes
into a single pass while generating the same tree.

One challenge for CD algorithms is to find tight-fitting bounding volumes and
hierarchy construction methods that create balanced and efficient trees. Note that
balanced trees have better worst-case execution, since the depth of every leaf is the
same (or almost the same). This means that it takes an equal amount of time to
traverse the hierarchy down to any leaf (i.e., a primitive), and that the time of a
collision query will not vary depending on which leaves are accessed. In this sense, a
balanced tree is optimal. However, this does not mean that it is best for all inputs. For
example, if part of a model will seldom or never be queried for a collision, then those
parts can be located deep in an unbalanced tree, so that the parts that are queried
most often are closer to the root [34]. The details of this procedure for an OBB tree
is described on page 15.

Note also that several spatial data structures are described in relation to accel-
eration algorithms in Section 19.1, and that BV creation is treated in Section 22.3.

25.2.2 Collision Testing between BVHs
In the mid phase of CD, we will find out which leaves’ BVs overlap with other leaves’
BVs, i.e., this phase will create a list of leaf-leaf pairs whose BVs overlap. This infor-
mation will be sent further to the narrow phase of CD (Section 25.3). Alternatively,
overlapping BV pairs can have their contents immediately checked for collision using
narrow phase testing.

A and B are two nodes in the model hierarchies, which at the first call are the
roots of the models. ABV and BBV are used to access the BV of the appropriate node.
Recall that Ac is the set of children nodes of A. The basic idea is to open a (larger)
box when overlap is detected and recursively test its contents.
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MidPhaseCD(A,B)
1 : if(isLeaf(A) and isLeaf(B))
2 : add(A,B,L); // add pair (A,B) to list L
3 : else if(isNotLeaf(A) and isNotLeaf(B))
4 : if(overlap(ABV , BBV ))
5 : if(SurfaceArea(A) > SurfaceArea(B))
6 : for each child C ∈ Ac

7 : MidPhaseCD(C,B)
8 : else

9 : for each child C ∈ Bc

10 : MidPhaseCD(A,C)
11 : else if(isLeaf(A) and isNotLeaf(B))
12 : if(overlap(ABV , BBV ))
13 : for each child C ∈ Bc

14 : MidPhaseCD(C,A)
15 : else

16 : if(overlap(BBV , ABV ))
17 : for each child C ∈ Ac

18 : MidPhaseCD(C,B)

As can be seen in this pseudocode, there are portions of code that could be shared,
but it is presented like this to show how the algorithm works. Some lines deserve some
attention. Lines 1–2 add a pair of leaf nodes (A,B) to a list, L, of all overlapping
leaf node pairs. Lines 3–10 handle the case where both nodes are internal nodes. The
consequence of the comparison SurfaceArea(A) > SurfaceArea(B) is that the node
with the largest surface area is descended. The idea behind this test is to get the
same tree traversal for the calls MidPhaseCD(A,B) and for MidPhaseCD(B,A),
so that traversal becomes deterministic. This test is also important since it tends to
give better performance, as the largest box is traversed first at each step.

Another idea is to alternate between descending A and B. Doing so avoids the
surface area computation, and so could be faster. Alternatively, the surface area can
be precomputed for rigid bodies, but this computation requires extra memory per
node. Also, for many BVs the actual surface area need not be computed, since it
suffices with a computation that preserves the “surface area order.” As an example,
it suffices to compare the radii for spheres. Note that the list L is typically sent to
the narrow phase as a next step.

25.2.3 BVH Cost Function
The function t in Equation 25.3 below was first introduced (in a slightly different form,
without the last term) as a framework for evaluating the performance of hierarchical
BV structures in the context of acceleration algorithms for ray tracing [92]. It has
since been used to evaluate the performance of CD algorithms as well [33], and it has
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been augmented by the last term to include a new cost specific to some systems [47, 50]
that might have a significant impact on performance. This cost results from the fact
that if a model is undergoing a rigid-body motion, then its BV and parts or all of
its hierarchy might have to be recomputed, depending on the motion and the choice
of BV:

t = nvcv + npcp + nucu. (25.3)

Here, nv is the number of BV/BV overlap tests, cv is the cost for a BV/BV overlap
test, np is the number of primitive pairs tested for overlap, cp is the cost for testing
whether two primitives overlap, nu is the number of BVs updated due to the model’s
motion, and cu is the cost for updating a BV.

Creating a better hierarchical decomposition of a model would result in lower values
of nv, np, and nu. Creating better methods for determining whether two BVs or two
triangles overlap would lower cv and cp. However, these are often conflicting goals,
because changing the type of BV in order to use a faster overlap test usually means
that we get looser-fitting volumes.

Examples of different bounding volumes that have been used in the past are
spheres [42], axis-aligned bounding boxes (AABBs) [5, 40], oriented bounding boxes
(OBBs) [33], k-DOPs (discrete oriented polytopes) [47, 49, 96], and capsules [55].
Spheres are the fastest to transform, and the overlap test is also fast, but they provide
quite a poor fit. AABBs normally provide a better fit and a fast overlap test, and they
are a good choice if there is a large amount of axially aligned geometry in a model (as
is the case in most architectural models). OBBs have a much better fit, but slower
overlap tests. The fit of the k-DOPs are determined by the parameter k—higher values
of k give a better fit, slower overlap testing, and poorer transform speed.

25.2.4 OBBTree
The OBBTree [33] is an example of a particular BVH structure used for mid phase
collision detection, and here will present it in some detail, as it is representative of
a typical collision detection system. This scheme was designed to perform especially
well if parallel close proximity, where two surfaces are quite close and nearly parallel,
is found during collision detection. These kinds of situations often occur in tolerance
analysis and in virtual prototyping. An example is mounting the machine parts of
an engine, where one would like to make sure that the parts can be assembled easily
without needing to building them first.

Choice of Bounding Volume
This method uses the oriented bounding box (OBB) as the bounding volume. However,
many concepts in this section also apply to other BVs, such as the AABB. One reason
to use OBBs is that a tree of them converges better to the underlying geometry
than AABBs and spheres. However, building a tree with AABBs is faster than with
OBBs, so performance depends on the use case. OBB/OBB overlap testing is treated
in Section 22.13.5. Using the performance evaluation framework of Section 25.2.3,
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Figure 25.8. At the left are two OBBs (A and B) that are to be tested for overlap with an OBB/OBB
overlap test that omits the last nine axis tests. If this is interpreted geometrically, then the OBB/OBB
overlap test is approximated with two AABB-AABB overlap tests. The middle illustration shows
how B is bounded by an AABB in the coordinate system of A. C and A overlap, so the test continues
on the right. Here, A is enclosed with an AABB in the coordinate system of B. B and D are reported
not to overlap. So, testing ends here. However, in three dimensions, D and B could overlap as well,
and still A and B need not overlap due to the remaining axis tests. In such cases, A and B would
erroneously be reported to overlap.

the preceding reasoning means that nv and np are lower for OBBs than for AABBs
and spheres.

Van den Bergen has suggested a simple technique for speeding up the overlap test
between two OBBs [5, 7], where the last nine axis tests that correspond to a direction
perpendicular to one edge of the first OBB and one edge of the second OBB are
skipped. This test is often referred to as SAT lite. Geometrically, this can be thought
of as doing two AABB/AABB tests, where the first test is done in the coordinate
system of the first OBB and the other is done in the coordinate system of the other.
This is illustrated in Figure 25.8. The shortened OBB/OBB test (which omits the
last nine axis tests) will sometimes report two disjoint OBBs as overlapping. In such
cases, the recursion in the OBBTree will go deeper than necessary. In testing, the net
result was that the average performance was improved by skipping these tests. Van
den Bergen’s technique has been implemented in a collision detection package called
SOLID [5, 6, 7, 9], which also handles deformable objects.

Hierarchy Building
The basic data structure of the OBBTree is an k-ary tree, i.e., an internal node may
have up to k children, where each internal node holds an OBB (Section 22.2) and each
external (leaf) node holds one or more triangles. The value k is usually chosen to fit
with the target architecture. For example, one may choose k = 8 if the implementation
is using AVX, which has a SIMD width of 8 for 32-bit floating point. The top-down
approach developed by Gottschalk et al. for creating the hierarchy divided into finding
a tight-fitting OBB for a triangle soup and then splitting this along one axis of the
OBB, which also categorizes the triangles into two groups. For each of these groups,
a new OBB is computed. The creation of OBBs is treated in Section 22.3.
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Figure 25.9. This figure shows how a set of geometry with its OBB is split along the longest axis of
the OBB, at the split point marked by the dashed line. Then the geometry is partitioned into two
subgroups, and an OBB is found for each of them. This procedure is repeated recursively to build
the OBBTree.

After we have computed an OBB for a set of triangles, the volume and the triangles
should be split and formed into two new OBBs. Gottschalk et al. use a strategy that
takes the longest axis of the box and splits it into two parts of the same length. An
illustration of this procedure is shown in Figure 25.9. A plane that splits the box
into two equal parts is used to partition the triangles into two subgroups. A triangle
that crosses this plane is assigned to the group that contains its centroid. In the rare
case that all centroids of all triangles are located on the dividing plane, or that all
centroids are located on the same side of the splitting plane, the other axes are tried
in diminishing order. Note that using a surface area heuristic (Equation 25.2) is likely
to yield better BVHs [95].

For each of the subgroups, the matrix method briefly presented in Section 22.3
is used to compute (sub-) OBBs. If the OBB is instead split at the median center
point, where each child has the same number of triangles, then balanced trees are
obtained. In the related field of ray tracing there is extensive research on other splitting
strategies [89].

Handling Rigid-Body Motions
In the OBBTree hierarchy, each OBB, A, is stored together with a rigid-body trans-
formation (a rotation matrix R and a translation vector t) matrix MA. This matrix
holds the relative orientation and position of the OBB with respect to its parent.

Now, assume that we start to test two OBBs, A and B, against each other. The
overlap test between A and B should then be done in the coordinate system of one
of the OBBs. Let us say that we decide to do the test in A’s coordinate system. In
this way, A is an AABB (in its own coordinate system) centered around the origin.
The idea is then to transform B into A’s coordinate system. This is done with the
matrix below, which first transforms B into its own position and orientation (with
MB) and then into A’s coordinate system (with the inverse of A’s transform, M−1A ).
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Recall that for rigid body transforms, the transpose is the inverse, so little additional
computation is needed:

TAB = M−1A MB . (25.4)

The OBB/OBB overlap test takes as input a matrix consisting of a 3× 3 rotation
matrix R and a translation vector t, which hold the orientation and position of B
with respect to A (Section 22.13.5), so TAB is decomposed as below:

TAB =

(
R t
0T 0

)
. (25.5)

Now, assume that A and B overlap, and that we want to descend into A’s child
called C. This can be done as follows. We choose to do the test in C’s coordinate
system. The idea is then to transform B into A’s coordinate system (with TAB) and
then transform that into the coordinate system of C (using M−1C ). This is done with
the following matrix, which is then used as the input to the OBB/OBB overlap test:

TCB = M−1C TAB . (25.6)

This procedure is then used recursively to test all OBBs.

Miscellaneous
The MidPhaseCD pseudocode for collision detection between two hierarchical trees,
as presented in Section 25.2.2, can be used on two trees created with the preceding
algorithms. All that needs to be exchanged is the overlap() function, which should
point to a routine that tests two OBBs for overlap.

All algorithms involved in OBBTree have been implemented in a free software
package called RAPID (Robust and Accurate Polygon Interference Detection) [33].

25.3 Narrow Phase Collision Detection
At this point, the broad and the mid phase has narrowed down the data to a list L
containing pairs of leaf nodes whose BVs overlap. The goal here is to either compute
all pairs of intersecting primitives, to assist in avoiding objects that penetrate each
other, or to use distance queries to determine if objects are sufficiently far from each
other. These two topics are described next.

25.3.1 Primitive versus Primitive
In general, we have a list, L, of pairs of leaf nodes that overlap when entering this
phase. In the simplest implementation one may perform a loop over each primitive in
the first leaf and test against all primitives in the other leaf. Primitive-primitive tests
are described in Chapter 22.
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Figure 25.10. To the left, two convex objects A and B are shown. To construct A − B, first move
A and B so that one reference point is at the origin (already done at the left). Then B is reflected,
as shown in the middle, and the chosen reference point on B is put on the surface of A and then the
reflected B is swept around A. This creates A−B, to the right. The minimum distance, d, is shown
both on the left and the right.

It should be noted that, from a code perspective, it may or may not be advan-
tageous to merge the mid and narrow phases to a single phase. A merge might give
simpler code, but with a single list of all pairs, one can sort so that all types of
primitive-primitive pairs are adjacent. This sorting can make for a faster parallel
SIMD implementation.

When the pair list, L, contains convex polyhedrons, one can use distance queries
to determine if two objects penetrate and, if so, move them apart until they do not.
This is the topic of the next section.

25.3.2 Distance Queries
In certain applications one wants to test whether an object is at least a certain dis-
tance from an environment. For example, when designing a new car, there has to be
enough space for different-sized passengers to be able to seat themselves comfortably.
Therefore, a virtual human of various sizes can be tried in the car’s seats, to see if
they can be seated without bumping into the car. Preferably, the passengers should
be able to seat themselves and still be at least, say, 10 cm apart from some of the car’s
interior elements. This sort of testing is called tolerance verification. This can be used
for path planning, i.e., how an object’s collision-free path from one point to another
can be determined algorithmically. Given the acceleration and velocity of an object,
the minimum distance can be used to estimate a lower bound on the time to impact.
In this way, collision detection can be avoided until that time [62]. Another related
query is of the penetration depth, that is, finding out how far two objects have moved
into each other. This distance can be used to move the objects back just enough so
that they do not penetrate any longer, and then an appropriate collision response can
be computed at that point.
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Figure 25.11. GJK. Upper left: The minimum distance between the origin and the polygon is to be
computed. Upper right: An arbitrary triangle is chosen as a starting point for the algorithm, and
the minimum distance to that triangle is computed. Vertex 7 is closest. Lower left: In the next step
(not shown), all vertices are projected onto the line from the origin to vertex 7, and the closest vertex
replaces the one in the triangle that is farthest away on this projection. Thus vertex 4 replaces vertex
8. The closest point on this triangle is then found, which is located on the edge from vertex 4 to 7.
Lower right: The vertices are projected onto the line from the origin to the closest point from the
previous step, and vertex 5 thus replaces vertex 1, which is farthest away on the projection. Vertex
5 is the closest point on this triangle, and when the vertices are projected on the line to vertex 5, we
find that vertex 5 is the closest point overall. This completes the iteration. At this time the closest
point on the triangle is found, which also happens to be vertex 5. This point is returned. (Illustration
after Jiménez et al. [44].)

One of the first practical approaches developed that compute the minimum distance
between convex polyhedra is called GJK, after its inventors Gilbert, Johnson, and
Keerthi [30]. An overview of this algorithm is given in this section. GJK computes
the minimum distance between two convex objects, A and B. To do this, the difference
object (sometimes called the sum object) between A and B is used [6]:

A−B = {x− y : x ∈ A,y ∈ B}. (25.7)

This is also called the Minkowski sum of A and (reflected) B (Section 25.11.3). All
differences x−y are treated as a point set, which forms a convex object. An example
of such a difference is shown in Figure 25.10.
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The idea of GJK is that, instead of computing the minimum distance between A
and B, we calculate the minimum distance between A−B and the origin. These two
distances can be shown to be equivalent. The algorithm is visualized in Figure 25.11.
Note that if the origin is inside A−B then A and B overlap.

The algorithm starts from an arbitrary simplex in the polyhedron. A simplex is the
simplest primitive in the respective dimension, so it is a triangle in two dimensions, and
a tetrahedron in three dimensions. This starting element can be any valid simplex,
e.g., any tetrahedron fully inside our polyhedron. Then the point on this simplex
closest to the origin is computed. Van den Bergen shows how this can be done by
solving a set of linear equations [6, 7]. A vector is then formed starting at the origin
and ending at the nearest point. All vertices of the polyhedron are projected onto this
vector, and the one with the smallest projection distance from the origin is chosen
to be a new vertex in the updated simplex. Since a new vertex will be added to the
simplex, an existing vertex in the simplex must then be removed (else it would not
remain a simplex). The point whose projection is farthest away is deleted. Once this
procedure is done, the minimum distance to the updated simplex is computed, and
the algorithm iterates through all vertices again until the algorithm cannot update
the simplex any longer. The algorithm terminates in a finite number of steps for
two polyhedra [30]. The performance of this algorithm can be improved using many
techniques, such as incremental computation and caching [6].

Van den Bergen describes a fast and robust implementation of GJK [6, 7]. GJK
can also be extended to compute penetration depth [8, 12, 37]. In particular, van
den Bergen [8, 9] describes a method called the expanding polytope algorithm (EPA),
which is based on GJK. When penetration has occurred, the origin (represented by
a plus-sign) in Figure 25.11 is found to be inside the polygon. EPA then performs
similar steps as GJK to find the point on the polygon that is closest to the origin.
There are several other algorithms computing minimum distance, e.g., such as the
Lin-Canny algorithm [61], V-Clip [70], PQP [55] SWIFT [23], and SWIFT++ [24],
which also computes distance between concave rigid bodies.

It is often beneficial to use the separating axis from the previous frame as the start-
ing vector when computing GJK for the current frame [8]. When temporal coherence
is high, the algorithm can often terminate in the first step and Gregorius [37] reports
an order of magnitude speedup. Note that it is also possible to use a method based
on tracing rays to compute penetration distance. See Figure 25.13 in the next section.

When using the separating axis theorem on convex polyhedra to find penetration
depth, another optimization is to store a simpler object, e.g., a sphere, fully inside
each convex polyhedron and use it to cull axis tests [85]. The amount of overlap of
two spheres on a separating axis will always be less than or equal to the amount of
overlap for the two convex polyhedra. Our goal is to find the minimum penetration
depth, the minimum we need to move two objects to separate them. Assuming that
after some axis tests the current minimum penetration depth is d, then we do not
need to further care about the current axis if the amount of overlap of the spheres is
> d, because then the amount of overlap of the convex polyhedra will be even larger.
This can result in a substantial increase in performance.
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Figure 25.12. Instead of computing the collision between the entire car and the environment (the
road), we place a ray at each wheel. These rays are then tested for intersection against the environ-
ment.

Note that when distance queries are used, no triangle-triangle intersections need
to be computed since we instead obtain minimum distances or minimum penetration
depths directly.

25.4 Collision Detection with Rays
In this section, we will present a fast technique that works well under certain circum-
stances. Imagine that a car drives upward on an inclined road and that we want to
use the information about the road (i.e., the primitives of which the road is built) to
steer the car upward. This could, of course, be done by testing all primitives of all
car wheels against all primitives of the road, using the techniques from Sections 25.1
through 25.3. However, for games and some other applications, this kind of detailed
collision detection is not always needed. Instead, we can approximate a moving object
with a set of rays. In the case of the car, we can put one ray at each of the four
wheels (see Figure 25.12). This approximation works well in practice, as long as we
can assume that the four wheels are the only places of the car that will be in con-
tact with the environment (the road). Assume that the car is standing on a plane at
the beginning, and that we place each ray at a wheel so that each origin lies at the
place where the wheel is in contact with the environment. The rays at the wheels are
then intersection-tested against the environment. If the distance from a ray origin to
the environment is zero, then that wheel is exactly on the ground. If the distance
is greater than zero, then that wheel has no contact with the environment, and a
negative distance means that the wheel has penetrated the environment. The appli-
cation can use these distances for computing a collision response—a negative distance
would move the car (at that wheel) upward, while a positive distance would move the
car downward (unless the car is flying though the air for a short while). Note that
this type of techniques could be harder to adapt to more complicated scenarios. For
example, if the car crashes and is set in rotating motion, many more rays in different
directions are needed.
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Figure 25.13. Vertices in the region where both boxes overlap shoot rays in their negative normal
direction against the other object. The two lower right rays hits the same object as they originate
from, and so are not processed further. A collision response is computed based on the lengths and
directions of the dotted lines.

To speed up the intersection testing, we can use the same technique we most often
use to increase efficiency in computer graphics—a hierarchical representation. The
environment can be represented by an axis-aligned BSP tree (Section 19.l.2), bound-
ing volume hierarchies, grids, (loose) octrees, or other data structures. For example,
Frye [28] uses a loose octree (Section 19.1.3) for dynamic geometry and an axis-aligned
BSP-tree for static geometry. Depending on what primitives are used in the environ-
ment, different ray/object intersection test methods are needed (Chapter 22).

Unlike standard ray tracing, where we need the closest object in front of the ray,
what is actually desired is the intersection point furthest back along the ray, which
can have a negative distance. To avoid having to treat the ray as searching in two
directions, the test ray’s origin is moved back until it is outside the bounding box
surrounding the object, and is then tested against the environment. In practice, this
just means that, instead of a ray starting at a distance 0, it starts at a negative
distance that lets it begin outside the object’s box. To handle a more general setting,
such as driving a car through a tunnel and detecting collision against the roof, one
would then have to search in both directions.

Hermann et al. [41] presents a different approach to using rays in collision detection.
This is illustrated in Figure 25.13. When two overlapping boxes have been found, only
the vertices in the overlapping region are processed. For each such vertex, a ray is
shot in the negative vertex normal direction and tested only against the other object.
If there is an intersection with the other object with a positive intersection distance,
then the vertex and intersection point are kept as a collision pair. This test is added
to Hermann et al. further describe how to filter out invalid pairs. The normals and
collision pairs are then used to compute a collision response. For example, a penalty
force can be applied in the direction of the vector between the two points in a collision
pair and the size of the force made proportional to that vector’s length. Lehericey et
al. [60] exploit temporal coherence to provide a faster variant of this method.
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Figure 25.14. To the left is some geometry (blue) seen from above. Its BSP tree is shown in the
middle. To test this tree against a circle with origin at p, the BSP tree is grown outwards with
the circle’s radius, and then the point p can instead be tested against the grown BSP tree. This is
shown to the right. Notice that the corners should be rounded, so this is an approximation that the
algorithm introduces.

25.5 Dynamic CD Using BSP Trees
Here, the collision detection algorithm by Melax [65, 66] will be presented. It deter-
mines collisions between the geometry described by a BSP tree (Section 19.l.2), and
a collider that can be either a sphere, a cylinder, or the convex hull of an object. It
also allows for dynamic collision detection. For example, if a sphere moves from a
position p0 at frame n to p1 at frame n + 1, the algorithm can detect if a collision
occurs anywhere along the straight line path from p0 to p1. The presented algorithm
has been used in commercial games, where a character’s geometry was approximated
by a cylinder.

The standard BSP tree can be tested against a line segment quite efficiently. A
line segment can represent a point (particle) that moves from p0 to p1. There may
be several intersections, but the first one (if any) represents the collision between the
point and the geometry represented in the BSP tree. Note that, in this case, the BSP
tree is surface aligned, not axis-aligned. That is, each plane in the tree is coincident
with a wall, floor, or ceiling in the scene. This is easily extended to handle a sphere,
with radius r, that moves from p0 to p1 instead of a point. Instead of testing the
line segment against the planes in the BSP tree nodes, each plane is moved a distance
r along the plane normal direction. See Section 25.11 for similar ways of recasting
intersection tests. This sort of plane adjustment is illustrated in Figure 25.14.

This is done for every collision query on the fly, so that one BSP tree can be used
for spheres of any size. Assuming a plane is π : n · x + d = 0, the adjusted plane is
π′ : n · x + d ± r = 0, where the sign of r depends on which side of the plane you
continue testing/traversing in search of a collision. Assuming that the character is
supposed to be in the positive half-space of the plane, i.e., where n · x + d ≥ 0, we
would have to subtract the radius r from d. Note then that the negative half-space is
considered “solid,” i.e., something that the character cannot step through.
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A sphere does not approximate a character in a game particularly well, but a few
spheres may work well enough [42]. The convex hull of the vertices of a character or
a cylinder surrounding the character does a better job. To use these other bounding
volumes, d in the plane equation has to be adjusted differently. To test a moving convex
hull of a set of vertices, S, against a BSP tree, the scalar value in Equation 25.8 below
is added to the d-value of the plane equation [65]:

−max
vi∈S

(n · (vi − p0)). (25.8)

The minus sign, again, assumes that characters are in the positive half-space of
the planes. The point p0 can be any point found suitable to be used as a reference
point. For the sphere, the center of the sphere was implicitly chosen. For a character,
a point close to the feet may be chosen, or perhaps a point at the navel. Sometimes
this choice simplifies equations (as the center of a sphere does). It is this point p0

that is tested against the adjusted BSP tree. For a dynamic query, that is, where the
character moves from one point to another during one frame, this point p0 is used
as the start point of the line segment. Assuming that the character is moved with a
vector w during one frame, the endpoint of the line segment is p1 = p0 + w.

The cylinder is perhaps even more useful because it is faster to test and still
approximates a character in a game fairly well. However, the derivation of the value
that adjusts the plane equation is more involved. What we do in general for this
algorithm is that we recast the testing of a bounding volume (sphere, convex hull, and
cylinder, in this case) against a BSP tree into testing a point, p0, against the adjusted
BSP tree. This is the same as Minkowski sums (Section 25.11.3 and 25.3.2). Then, to
extend this to a moving object, the point p0 is replaced by testing with a line segment
from p0 to the destination point p1

We derive such a test for a cylinder, whose properties are shown to the top left in
Figure 25.15, where the reference point, p0, is at the bottom center of the cylinder.
Figure 25.15(b) shows what we want to solve: testing the cylinder against the plane
π. In Figure 25.15(c), we move the plane π so that it barely touches the cylinder. The
distance, e, from p0 to the moved plane is computed. This distance, e, is then used
in Figure 25.15(d) to move the plane π into its new position π′. Thus, the test has
been reduced to testing p0 against π′. The e-value is computed on the fly for each
plane each frame. In practice, a vector is first computed from p0 to the point t, where
the moved plane touches the cylinder. This is shown in Figure 25.15(c). Next, e is
computed as

e = |n · (t− p0)|. (25.9)

Now all that remains is to compute t. The z-component (i.e., cylinder axis di-
rection) of t is simple; if nz > 0, then tz = p0z, i.e., the z-component of p0. Else,
tz = p0z + h. These tz values correspond to the bottom and top of the cylinder. If nx
and ny are both zero (e.g., for a floor or ceiling), then we can use any point on the
caps of the cylinder. A natural choice is (tx, ty) = (px, py), the center of the cylinder
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Figure 25.15. Figure (a) shows a cylinder with height h, radius r, and reference point p0. The
sequence (b)-(d) then shows how testing a plane, π, against a cylinder (shown from the side) can be
recast into testing a point p0 against a new plane π′. Since p0 is in the positive half-space of π′,
there is no overlap in this case.

cap. Otherwise, for a non-vertical n, the following choice gives a point on the rim of
the cylinder cap:

tx =
−rnx√
n2x + n2y

+ px, ty =
−rny√
n2x + n2y

+ py. (25.10)

That is, we project the plane normal onto the xy-plane, normalize it, and then scale
by r to land on the rim of the cylinder.

Inaccuracies can occur using this method. One case is shown in Figure 25.16. As
can be seen, this can be solved by introducing extra bevel planes. In practice, the
“outer” angle between two neighboring planes are computed, and an extra plane is
inserted if the angle is greater than 90◦. The idea is to improve the approximation of
what should be a rounded corner. In Figure 25.17, the difference between a normal
BSP tree and a BSP tree augmented with bevel planes can be seen. The beveling
planes certainly improves the accuracy, but it does not remove all errors.

Pseudocode for this collision detection algorithm follows below. It is called with
the root N of the BSP tree, whose children are N.negativechild and N.positivechild,



26 25. Collision Detection

Figure 25.16. In the left illustration, the right sphere collides correctly, while the left sphere detects
a collision too early. To the right, this is solved by introducing an extra bevel plane, which actually
does not correspond to any real geometry. The collision appears to be more accurate using such
planes. (Illustration after Melax [65].)

Figure 25.17. To the left, a normal cell and its BSP tree is shown. To the right, bevel planes have
been added to the cell, and the changes in the BSP tree are shown. (Illustration after Melax [65].)

and the line segment defined by p0 and p1. Note that the point of impact (if any) is
returned in a global variable called pimpact:
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HitCheckBSP(N,p0,p1)
returns ({TRUE, FALSE});

1 : if(isEmptyLeaf(N)) return FALSE;
2 : if(isSolidCell(N))
3 : pimpact = p0

4 : return TRUE;
5 : end

6 : hit = FALSE;
7 : if(clipLineInside(N shift out,p0,p1,&w0,&w1))
8 : hit = HitCheckBSP(N.negativechild,w0,w1);
9 : if(hit) p1 = pimpact

10 : end

11 : if(clipLineOutside(N shift in,p0,p1,&w0,&w1))
12 : hit| = HitCheckBSP(N.positivechild,w0,w1);
13 : end

14 : return hit;

The function isSolidCell returns TRUE if we have reached a leaf, and we are on the
solid side (as opposed to the empty). See Figure 25.14 for an illustration of empty and
solid cells. The function clipLineInside returns TRUE if part of the line segment (de-
fined by the movement path v0 and v1) is inside the node’s shifted plane, that is, in the
negative half-space. It also clips the line against the node’s shifted plane, and returns
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Figure 25.18. To the left, the line segment defined by p0 and p1 is clipped against a plane defined
by a normal n. The dynamic adjustments of this plane is shown as dashed lines. The functions
clipLineInside and clipLineOutside returns the line segments defined by w0 and w1. Note that
all three lines should have the same y-coordinates, but they are shown like this for clarity. To the
right, an example is shown that explains why the lines should be clipped as shown to the left. The
node A in the BSP tree belongs to both the triangle on the left and on the right. Therefore, it is
necessary to move its plane in both directions.
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the resulting line segment in w0 and w1. The function clipLineOutside is similar.
Note also that the line segments returned by clipLineInside and clipLineOutside

overlap each other. The reason for this is shown in Figure 25.18, as well as how the
line is clipped. Line 9 sets v1 = pimpact, and this is simply an optimization. If a hit
has been found, and thus a potential impact point, pimpact, then nothing beyond this
point need to be tested since we want the first point of impact. On Lines 7 and 11, N
is shifted “out” versus “in.” These shifts refer to the adjusted plane equations derived
earlier for spheres, convex hulls, and cylinders.

The advantage of this scheme is that only a single BSP tree is needed to test all
characters and objects. The alternative would be to store different BSP trees for each
different radius and object type. Other dynamic intersection tests are presented in
Section 25.11.

25.6 Time-Critical Collision Detection
Assume that a certain game engine is rendering a scene in 14 ms when the viewer looks
up at the sky, but that the rendering takes 30 ms when the viewer is looking toward
the horizon. Clearly, this will give considerably different frame rates, which is usually
disturbing to the user. One rendering algorithm that attempts to achieve constant
frame rate is presented in Section 19.9.3. Here, another approach, called time-critical
collision detection, is taken, which can be used if the application uses CD as well. It
is called “time-critical” because the CD algorithm is given a certain time frame, say
9 ms, to complete its task, and it must finish within this time. Another reason to use
such algorithms for CD is that it is critical for the perceived causality [74, 75], e.g.,
rapidly detecting whether one object causes another to move.

The following algorithm was introduced by Hubbard [42]. The idea is to traverse
the bounding volume hierarchies in breadth-first order. This means that all nodes at
one level in the tree are visited before descending to the next level. This is in contrast
to depth-first traversal, which traverses the shortest way to the leaves (as done in the
pseudocode in Section 25.2.2). These two traversals are illustrated in Figure 25.19.
The reason for using breadth-first traversal is that both the left and the right subtree
of a node are visited, which means that BVs which together enclose the entire object
are visited. With depth-first traversal, we might only visit the left subtree because
the algorithm might run out of time. When we do not know whether we have time to
traverse the whole tree, it is at least better to traverse a little of both subtrees.

The algorithm first finds all pairs of objects whose BVs overlap, using, for example,
the algorithm in Section 25.1. These pairs are put in a queue, called Q. The next
phase starts by taking out the first BV pair from the queue. Their children BVs are
tested against each other and if they overlap, the children pairs are put at the end
of the queue. Then the testing continues with the next BV pair in the queue, until
either the queue is empty (in which case all of the tree has been traversed) or until
we run out of time [42].
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Figure 25.19. Depth-first (left) versus breadth-first (right) traversal. Depth-first traversal is often
used in collision detection when traversing the bounding volume hierarchies, but for time-critical CD,
breadth-first traversal is used.

Another related approach is to give each BV pair a priority and sort the queue
on this priority. This priority can be based on factors such as visibility, eccentricity,
and distance. Dingliana and O’Sullivan describe algorithms for computing approx-
imate collision response and approximate collision contact determination [19]. This
is needed for time-critical CD since the time may run out before the tree traversal
has finished. Mendoza and O’Sullivan present a time-critical CD algorithm for de-
formable objects [67]. Kulpa et al. [51] performed user studies on using level of detail
techniques, and provide a system where collision avoidance can be relaxed in the least
perceptible manner.

25.7 Deformable Models
So far, the main focus of this section has been on either static models or rigid-body
animated models. There are other sorts of motion, such as waves on the water or
a piece of cloth swaying in the wind. This type of motion is generally not possible
to describe using rigid bodies, and instead, one can treat each vertex as being an
independent vector function over time. Collision detection for such models is generally
more expensive.

Assuming that the mesh connectivity stays the same for an object during defor-
mation, it is possible to design clever algorithms that exploit this property. Such
deformation is what would happen to a piece of cloth in the wind (unless it is some-
how torn apart). As a preprocess, an initial hierarchical bounding volume (BV) tree
is built. Instead of actually rebuilding the tree when deformation has taken place,
the bounding volumes are simply refitted to the deformed geometry [5, 56]. By using
AABBs, which are fast to recompute, this operation is pretty efficient (as compared
to OBBs). In addition, merging k children AABBs into a parent AABB is also quick
and gives an optimal parent AABB. However, in general, any type of BV can be used.
Van den Bergen organizes his tree so that all BVs are allocated and placed in an array,
where a node always is placed so that its index is lower than its child nodes [5, 7].
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Figure 25.20. The hybrid bottom-up/top-down tree update method. The upper levels are updated
using a bottom-up strategy, and only those nodes deeper down in the tree that are reached during a
tree traversal are updated using a top-down method.

In this way, a bottom-up update can be done by traversing the array from the end
backward, recomputing each BV at each node. This means that the BVs of the leaves
are recomputed first, and then their parents’ BVs are recomputed using the newly
computed BVs, and so on back to the root of the tree. This sort of refit operation is
reported to be about ten times as fast as rebuilding the tree from scratch [5].

However, it has been noted that, in general, few BVs in a tree need to be updated.
This is because most of them are not used during a collision query. A hybrid bottom-
up/top-down tree update has therefore been proposed [56]. The idea is to use a
bottom-up update for the higher levels (including the root), which means that only
the upper BVs will be updated each frame. The rationale for this is that the upper
levels often prune away most geometry. These updated upper levels are tested for
overlap with the other tree (also possibly deforming and updated). For nodes that do
not overlap, we can skip the updating of their subtrees, and so save much effort. On
the other hand, for nodes that do overlap, a top-down strategy is used for updating
nodes in their subtrees as they are needed during a tree traversal. Bottom-up could
also be used for these, but top-down was found to be more effective [56]. Good results
were achieved when the first n/2 upper levels were updated with a bottom-up method,
and the lower n/2 levels with a top-down method. This is shown in Figure 25.20. To
update a node top-down, the node records which vertices its entire subtree holds, and
this list is traversed and a minimal BV is computed. When using top-down update,
overlap testing is done as soon as a BV has been updated, so that the traversal can
be terminated if no overlap is found. This, again, gives more efficiency. Initial tests
show that this method is four to five times faster than van den Bergen’s method [56].

Sometimes, one can create more efficient algorithms when there is some known
information about the type of deformation. For example, if a model is deformed
using morphing (Section 4.5), then you can morph (i.e., blend) the BVs in a bounding
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volume hierarchy in the same way that you morph the actual geometry [57]. This
does not create optimal BVs during morphing, but they are guaranteed to always
contain the morphed geometry. This update can also be done in a top-down manner,
i.e., only where it is needed. This technique can be used for AABBs, k-DOPs, and
spheres. Computing a morphed BV from k different BVs costs O(k), but usually
k is minuscule and can be regarded as a constant. James and Pai [43] present a
framework with a reduced deformation model, which is described by a combination
of displacement fields. This provides for generous increases in performance. Ladislav
and Zara present similar CD techniques for skinned models [52].

However, when the motion is completely unstructured and has breaking objects,
these methods do not work. Some recent techniques attempt to track how well a
subtree in a BVH fits the underlying geometry, and only rebuilds them as needed
using some heuristics [58, 94].

Another general method for deformable objects first computes minimal AABBs
around two objects to be tested for collision [83]. If they overlap, the overlap AABB
region is computed, which is simply the intersection volume of the AABBs. It is only
inside this overlap region that a collision can occur. A list of all triangles inside this
region is created. An octree (Section 19.1.3) that surrounds the entire scene is then
used. The idea is then to insert triangles into the octree’s nodes, and if triangles from
both objects are found in a leaf node, then these triangles are tested against each
other. Several optimizations are possible. First, the octree does not need to be built
explicitly. When a node gets a list of triangles, the triangles are tested against the
eight children nodes, and eight new triangle lists are created. This recursion ends at
the leaves, where triangle/triangle testing can take place. Second, this recursion can
end any time the triangle list has triangles from only one of the objects. To avoid
testing a triangle pair more than once, a checklist is kept that tracks the tested pairs.
The efficiency of this method may break down when an overlap region is extensive, or
there are many triangles in an overlap region.

Another approach is to use the GPU tessellation capability to detect collisions [72].
First the region of overlap between two objects are found, and then all patches inside
that region are voxelized using tessellation using one bit per voxel. This voxel grid is
then used to detect collisions. This approach was extended to also handle displacement
mapping due to, for example, a car driving in sand and leaving trails [79].

25.8 Continuous Collision Detection
Often, collision detection is simply done once per frame and at discrete times. Dynamic
intersection tests were presented in Section 25.11, where the time of impact between
simple objects were computed. The reason for doing such tests is to avoid strange
artifacts. For example, if a ball is being thrown in high speed toward a wall, the ball
may be in front of the wall at one time, and for the next frame it has moved past the
wall and escaped the detection of collision with the wall. Continuous collision detection
(CCD), similar to dynamic intersection tests, aims at removing such artifacts.
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Figure 25.21. Notation for continuous collision detection used in Equation 25.11. (Illustration after
Catto [14].)

Here, we will describe a method that is used in the game industry. We wish to
determine when two convex objects A and B collide. Each object has a linear velocity
v and an angular velocity ω, and a radius r which is the distance from the centroid of
the object to the farthest vertex from it. This notation is illustrated in Figure 25.21.
First, the shortest distance vector, d, between A and B is computed using the GJK
algorithm (Section 25.3.2). The idea is then to compute a time ∆t where it can be
guaranteed that the two objects do not collide inside that time interval. It is possible
to prove [14, 97](

(vB − vA) · d

||d||
+ ||ωA||rA + ||ωB ||rb

)
︸ ︷︷ ︸

c

∆t ≤ ||d||, (25.11)

where c is a bound on the velocity along d. If none of A and B were rotating,
c = (vB − vA) · d/||d||, i.e., the relative velocity projected on d, which means that
the equation is the classic formula where distance equals velocity multiplied by time.
The rotational terms (using ω) conservatively estimate the maximum change due to
rotation. Hence, the maximum amount of time without a collision is then ∆t = ||d||/c.
If this time is larger than then time between two frames, then A and B cannot collide.
If this is not true, then it is possible to move the two objects as far as they can get
during ∆t, and then run the algorithm again until it converges to some tolerance. Since
the estimate ∆t is conservative, this algorithm is called conservative advancement.
Catto improves performance using root-finding techniques and uses this technique
in Diablo 3 [14]. Zhang et al. [97] describes a method to handle also non-convex
polyhedra.
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Figure 25.22. Collision response for a sphere approaching a plane. To the left the velocity vector
v is divided into two components, vn, and vp. To the right, perfectly elastic (bouncy) collision is
shown, where the new velocity is v′ = vp − vn. For a less elastic collision, the length of −vn could
be decreased.

25.9 Collision Response
Collision response is the action that should be taken to avoid (abnormal) interpenetra-
tion of objects. Assume, for example, that a sphere is moving toward a cube. When
the sphere first hits the cube, which is determined by collision detection algorithms,
we would like the sphere to change its trajectory (e.g., velocity direction), so it appears
that they collided. This is the task of collision response techniques, which has been
and still is the subject of intensive research [2, 18, 38, 69, 71, 93]. It is a complex
topic, and in this section only the simplest technique will be presented.

In Section 25.11.1, a technique for computing the exact time of collision between a
sphere and a plane was presented. Here we will explain what happens to the sphere’s
motion at the time of collision.

Assume that a sphere is moving toward a plane. The velocity vector is v, and the
plane is π : n · x + d = 0, where n is normalized. This is shown in Figure 25.22. To
compute the simplest response, we represent the velocity vector as

v = vn + vp, where vn = (v · n)n, and vp = v − vn. (25.12)

With this representation, the velocity vector, v′, after the collision is [54]

v′ = vp − vn. (25.13)

Here, we have assumed that the response was totally elastic. This means that no
kinetic energy is lost, and thus that the response is “perfectly bouncy” [93]. Now,
normally the ball is deformed slightly at collision, and some energy transformed into
heat, so some energy is lost. This is described with a coefficient of restitution, k (often
also denoted ε). The velocity parallel to the plane, vp, remains unchanged, while vn

is dampened with k ∈ [0, 1]:
v′ = vp − kvn, (25.14)
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which is an empirical “law” for collisions. As k gets smaller, more and more energy
is lost, and the collision appears less and less bouncy. At k = 0, the motion after
collision is parallel to the plane, so the ball appears to roll on the plane.

More sophisticated collision response is based on simulation of physics, and involves
creating a system of equations that is solved using an ordinary differential equation
(ODE) solver. In such algorithms, a point of collision and a normal at this point is
needed. The interested reader should consult the SIGGRAPH course notes by Witkin
et al. [93] and the paper by Dingliana et al. [18]. Catto [15] describes how sequential
impulses can be applied using an iterative solver. Also, O’Sullivan and Dingliana
present experiments that show that it is hard for a human to judge whether a collision
response is correct [74, 75]. This is especially true when more dimensions are involved
(i.e., it is easier in one dimension than in three). To produce a real-time algorithm,
they found that when there was not time enough to compute an accurate response,
a random collision response could be used. These were found to be as believable as
more accurate responses.

25.10 Particles
In this section, we will describe two collision detection methods for particles. The first
type is for particle systems (Section 13.8), which often are used as special effects, and
the other type is more for physics simulations, e.g., to model fluids and smoke, where
matter is approximated by a large set of small particles. These two types are closely
related and the techniques can sometimes be used for both.

25.10.1 Particle Systems
We start by describing an inexpensive, approximate collision system for particles based
on the depth buffer [84]. This is in the same spirit as screen-space ambient occlusion
methods (Section 11.3). The basic idea is to provide a method that can handle tens of
thousands particles in a tiny amount of total time. The system can be used for, e.g.,
rain drops, sparks, rock chips, and splashes. Each particle is to be tested for collision
against the scene and the approximation used here is the depth buffer as rendered
from the eye. This means that a particle can only collide against a visible surface on
screen. To avoid particles from moving through a visible surface, it is assumed that
each surface as some thickness in depth in which collision occurs. When a collision
occurs, the normal is fetched from a normal buffer, and for incoming particles reaching
the surface, the particle is first moved back toward its velocity vector to the position
in the depth buffer. After that, the reflected direction is computed and the particle
is moved in that direction. Particles coming from behind are simply destroyed since
doing so avoids having them “bleed through” visible surfaces.

Using the depth buffer has some disadvantages, e.g, that collision only can occur
against surfaces visible from the eye, but this method can work admirably for approx-
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Figure 25.23. Top: A water surface simulated using particles, where each particle is visualized as
a blue sphere. The water interacts with both the environment consisting of a few rocks, some tori,
walls and floor. Bottom: The water surface derived from the particles was rendered with motion blur
and refraction. (Images simulated and rendered using NVIDIA Flex demo.)

imate effects. If better accuracy is needed one can use signed distance fields (SDFs),
which also are treated in Section 17.3, for collision detection. The major advantage is
that the SDF can also be created for hidden parts of the scene and so the represen-
tation is often stored in a three-dimensional texture. Fisher and Lin [27] used SDFs
to compute penetration distance between deformable models. Furhmann et al. [29]
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represented rigid-body objects using only SDFs and then tested only the particles of
deformable objects against the SDF. Particles penetrating the inside of the SDF were
moved back to the surface itself. More complex methods for both collision detection
and response can also be used. Di Donato [17] uses ASTC compressed volume textures
on mobile to represent a voxelization of the scene for particle collision detection, along
with transform feedback to store results for the next step of the simulation.

25.10.2 Particles for Physical Simulation
Here, we will briefly describe how particles can be used for physical simulation of,
say, a volume of water, as illustrated in Figure 25.23. It is common to represent
such matter as a large set of particles, where each particle can have any position as
long as it respects the other particles, e.g., two particles are not allowed to get too
close to each other. Other quantities that particles need to take into account are
gravity, velocity, and user-supplied forces, for example. This is called a Lagrangian or
particle-based method [35]. Since the force of a particle drops off with the distance, it
is therefore sufficient to let a particle interact with only the particles within a certain
radius. Hence, we can use any type of spatial data structure to accelerate the process
of finding particle-particle collisions. This includes quickly building an AABB tree
(Section 25.1.3) or uniform or hierarchical grids (Section 25.1.3), for example.

Macklin et al. [64] present an approach for handling liquids, gases, rigid bodies,
cloth, and deformable solids in a single unified framework so that all types of matter
can affect all other types. They use signed distance fields to rapidly resolve collisions.
They present a GPU implementation with real-time performance. An example is
shown in Figure 25.23.

25.11 Dynamic Intersection Testing
In Chapter 22, only static intersection testing is considered. This means that all
objects involved are not moving when tested. However, this is not always a realistic
scenario, especially since we render frames at discrete times. For example, discrete
testing means that a ball that is on one side of a closed door at time t might move to
the other side at t+ ∆t (i.e., the next frame), without any collision being noticed by a
static intersection test. One solution is to make several tests uniformly spaced between
t and t + ∆t. This would increase the computational load, and still the intersection
could be missed. The thickness of the far side of the door could be increased for testing
purposes, but if the sphere is moving quickly enough this technique may fail [14]. A
dynamic intersection test is designed to cope with this problem. Section 25.5 provided
an in-depth examination of dynamic intersection testing of a BSP with a cylinder.
This section provides other common dynamic intersection tests. More information
can be found in Ericson’s [25] and Eberly’s [22] books, as well as presentations by
Catto [14] and Gregorius [37].
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Methods such as shaft culling [39] can be used to aid in intersection testing of
moving AABBs. The object moving through space is represented by two AABBs at
different times, and these two AABBs are joined by a small set of planes. This simple
convex hull can be tested against objects for intersection. However, bounding sphere
intersection algorithms are considerably faster to evaluate and can be more efficient
overall if the spheres contain their objects fairly tightly. In fact, it is often worthwhile
to use a small set of spheres to tightly bound and represent the moving object [81].
Capsules—two spheres joined by a tube—can be used for the bounds of animated
characters, and tapered capsules for limbs and cloth simulation.

One principle that can be applied to dynamic intersection testing situations where
only translations (not rotations) take place is the fact that motion is relative. Assume
object A moves with velocity vA and object B with velocity vB , where the velocity
is the amount an object has moved during the frame. To simplify calculations, we
instead assume that A is moving and B is still. To compensate for B’s velocity, A’s
velocity is then: v = vA − vB . As such, only one object is given a velocity in the
algorithms that follow.

25.11.1 Sphere/Plane
Testing a sphere dynamically against a plane is simple. Assume the sphere has its
center at c and a radius r. In contrast to the static test, the sphere also has a velocity
v during the entire frame time ∆t. So, in the next frame, the sphere will be located at
e = c+ ∆tv. For simplicity, assume ∆t is 1 and that this frame starts at time 0. The
question is: Has the sphere collided with a plane π : n · x + d = 0 during this time?

The signed distance, sc, from the sphere’s center to the plane is obtained by plug-
ging the sphere center into the plane equation. Subtracting the sphere radius from this
distance gives how far (along the plane normal) the sphere can move before reaching
the plane. This is illustrated in Figure 25.24. A similar distance, se, is computed for
the endpoint e. Now, if the sphere centers are on the same side of the plane (tested
as scse > 0), and if |sc| > r and |se| > r, then an intersection cannot occur, and the
sphere can safely be moved to e. Otherwise, the sphere position and the exact time
when the intersection occurs is obtained as follows [32]. The time when the sphere
first touches the plane is t, where t is computed as

t =
sc − r
sc − se

. (25.15)

The sphere center is then located at c + tv. A simple collision response at this point
would be to reflect the velocity vector v around the plane normal, and move the sphere
using this vector: (1− t)r, where 1− t is the remaining time to the next frame from
the collision, and r is the reflection vector.
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Figure 25.24. The notation used in the dynamic sphere/plane intersection test. The middle sphere
shows the position of the sphere at the time when collision occurs. Note that sc and se are both
signed distances.

25.11.2 Sphere/Sphere
Testing two moving spheres A and B for intersection turns out to be equivalent to
testing a ray against a static sphere—a surprising result. This equivalency is shown
by performing two steps. First, use the principle of relative motion to make sphere B
become static. Then, a technique is borrowed from the frustum/sphere intersection
test (Section 22.14.2). In that test, the sphere was moved along the surface of the
frustum to create a larger frustum. By extending the frustum outward by the radius
of the sphere, the sphere itself could be shrunk to a point. Here, moving one sphere
over the surface of another sphere results in a new sphere that is the sum of the radii
of the two original spheres.

So, the radius of sphere A is added to the radius of B to give B a new radius. Now
we have the situation where sphere B is static and is larger, and sphere A is a point
moving along a straight line, i.e., a ray. See Figure 25.25.

As this basic intersection test was already presented in Section 22.6, we will simply
present the final result:

(vAB · vAB)t2 + 2(l · vAB)t+ l · l− (rA + rB)2 = 0. (25.16)

In this equation, vAB = vA − vB , and l = cA − cB , where cA and cB are the
centers of the spheres. This gives a, b, and c:

a = (vAB · vAB),

b = 2(l · vAB),

c = l · l− (rA + rB)2,

(25.17)
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Figure 25.25. The left figure shows two spheres moving and colliding. In the center figure, sphere B
has been made static by subtracting its velocity from both spheres. Note that the relative positions
of the spheres at the collision point remains the same. On the right, the radius rA of sphere A is
added to B and subtracted from itself, making the moving sphere A into a ray.

which are values used in the quadratic equation

at2 + bt+ c = 0. (25.18)

The two roots are computed by first computing

q = −1

2
(b+ sign(b)

√
b2 − 4ac). (25.19)

Here, sign(b) is +1 when b ≥ 0, else −1. Then the two roots are

t0 =
q

a
,

t1 =
c

q
.

(25.20)

This form of solving the quadratic is not what is normally presented in textbooks,
but Press et al. note that it is more numerically stable [77].

We assume that the spheres do not overlap at the start, something that could be
determined by a static sphere/sphere test. The smallest value in the range [t0, t1] that
lies within [0, 1] (the time of the frame) is the time of first intersection. Plugging this
t-value into

pA(t) = cA + tvA,

pB(t) = cB + tvB

(25.21)

yields the location of each sphere at the time of first contact. The main difference of
this test and the ray/sphere test presented earlier is that the ray direction vAB is not
normalized here.
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25.11.3 Sphere/Polygon
Dynamic sphere/plane intersection was simple enough to visualize directly. That said,
sphere/plane intersection can be converted to another form in a similar fashion as done
with sphere/sphere intersection. That is, the moving sphere can be shrunk to a moving
point, so forming a ray, and the plane expanded to a slab the thickness of the sphere’s
diameter. The key idea used in both tests is that of computing what is called the
Minkowski sum of the two objects. The Minkowski sum of a sphere and a sphere is a
larger sphere equal to the radius of both.

The sum of a sphere and a plane is a plane thickened in each direction by the
sphere’s radius. Any two volumes can be added together in this fashion, though
sometimes the result is difficult to describe. For dynamic sphere/polygon testing the
idea is to test a ray against the Minkowski sum of the sphere and polygon.

We will not present his method in depth here, but rather note that this
sphere/polygon test is equivalent to testing a ray (represented by the center of the
sphere moving along a line) against the Minkowski sum of the sphere and polygon.
This summed surface is one in which the vertices have been turned into spheres of
radius r, the edges into cylinders of radius r, and the polygon itself duplicated, then
raised and lowered by r to seal off the object. See Figure 25.26 for a visualization of
this. This is the same sort of expansion as done for frustum/sphere intersection (Sec-
tion 22.14.2). So, the algorithm presented can be thought of as testing a ray against
this volume’s parts: First, the polygon facing the ray is tested, then the cylinders
representing the edges are tested, and finally, the vertex spheres are tested against
the ray.

Thinking about this puffy object gives insight as to why a polygon is most efficiently
tested by using the order of area, then edges, then vertices. The polygon in this puffy
object that faces the sphere is not covered by the object’s cylinders and spheres, so
testing it first will give the closest possible intersection point without further testing.
Similarly, the cylinders formed by the edges cover the spheres, but the spheres cover
only the insides of the cylinders.

Hitting the inside of the cylinder with a ray is equivalent to finding the point
where the moving sphere last hits the corresponding edge, a point we do not care
about. The closest cylinder exterior intersection (if one exists) will always be closer
than the closest sphere intersection. So, finding a closest intersection with a cylinder
is sufficient to end testing without needing to check the vertex spheres. It is much
easier (at least for us) to think about testing order when dealing with a ray and this
puffy object than the original sphere and polygon.

Another insight from this puffy object model is that, for polygons with concavi-
ties, a vertex at any concave location does not have to be tested against the moving
sphere, as the sphere formed at such a vertex is not visible from the outside. Efficient
dynamic sphere/object intersection tests can be derived by using relative motion and
the transformation of a moving sphere into a ray by using Minkowski sums.

Static intersection tests can also be derived by testing against the Minkowski sum.
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Figure 25.26. In the left figure, a sphere moves toward a polygon. In the right figure, the sphere is
deflated to a point and a ray shoots at an “inflated” version of the polygon. The two intersection
tests are equivalent.

For example, if the sphere’s center is found to be inside this puffy model, the sphere and
triangle intersect at their initial locations. The related idea of a Minkowski difference is
a more general way to describe this inclusion test for arbitrary objects (Section 25.3.2).
Taking the difference subtracts one object from another. The subtracted object has
its coordinate values negated. If two objects intersect, the origin will be included in
their Minkowski difference. This point represents a location that exists inside both
objects. Gregorius [36] discusses how the Minkowski difference and an object’s Gauss
map can provide insights for optimizing the use of the separating axis test.

More complex dynamic tests exist, such as for triangle/triangle contact. Van Wa-
veren [91] discusses dynamic collision detection for polyhedra, based on testing for
vertex/polygon and edge/edge collisions. Catto [14] discusses the concept of conser-
vative advancement, where the safe distance between two objects is found and used
to move the objects closer and then to test again. However, using this safe inter-
val can make convergence take a long time. She presents bilateral advancement for
triangle/triangle intersection, which is effectively an improved root-finding method.
Shellshear and Ytterlid [82] provide SSE-optimized code for distance queries between
triangles, lines, and points. The Proximity Query Package (PQP) library provides
code for mesh object overlap and the minimum distance between two models.
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Figure 25.27. Left: the stationary SAT illustrated for an axis a. A and B do not overlap on this
axis. Right: the dynamic SAT illustrated. A moves and the projection of its interval on a is tracked
during the movement. Here, the two objects overlap on axis a.

25.11.4 Dynamic Separating Axis Method
The separating axis test (SAT) in Section 22.2 is helpful in testing convex polyhedrons,
e.g., boxes and triangles, against each other. This type of testing can be extended to
dynamic queries as well [11, 20, 25, 37, 80].

Remember that the SAT method tests a set of axes to see whether the projections
of the two objects onto these axes overlap. If all projections on all axes overlap, then
the objects overlap as well. The key to solving the problem dynamically is to move the
projected interval of the moving object with a speed of (v·a)/(a·a) (see Equation 4.62)
on the axis, a [11]. Again, if there is overlap on all tested axes, then the dynamic
objects overlap, otherwise they do not. See Figure 25.27 for an illustration of the
difference between the stationary SAT and the dynamic SAT.

Eberly [20], using an idea by Ron Levine, also computes the actual time of in-
tersection between A and B. This is done by computing times when they just start
to overlap, ts, and when they stop overlapping (because the intervals have moved
“through” each other), te. The hit between A and B occurs at the largest of all the
tss for all the axes. Likewise, the end of overlapping occurs at the smallest of all
the te values. Early rejection optimizations include detecting when the intervals are
nonoverlapping at t = 0 and moving apart. Also, if at any time the largest ts is greater
than the smallest te, then the objects do not overlap, and so the test is terminated.
This is similar to the ray/box intersection test in Section 22.7.1. Eberly has code for
a wide range of tests between convex polyhedra, including box/box, triangle/box, and
triangle/triangle. Gregorius [37] presents algorithms for dynamic intersection tests
among spheres, capsules, convex hulls, and meshes.

Further Reading and Resources
See this book’s website, realtimerendering.com, for the latest information and free
software in this field. One of the best resources for CD is Ericson’s book Real-Time
Collision Detection [25], which also includes much code. The collision detection book
by van den Bergen [9] has a particular focus on GJK and the SOLID CD software
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system, included with the book. Van den Bergen has a worthwhile presentation about
physics for game programmers [10] and Catto provides a pleasant introduction to
GJK [13]. Teschner et al. [87] provide a survey of CD algorithms for deformable
objects. Schneider and Eberly present algorithms for computing the distance between
many different primitives in their book on geometrical tools [80].

More information on spatial data structures can be found in Section 19.1. Beyond
Ericson’s more approachable book [25], Samet’s book [78] is an extremely comprehen-
sive reference work on spatial data structures.

Books by Millington [68], Erleben et al. [26], and Eberly [21] are comprehensive
guides to the field of collision response.
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Proximity Query Package, 41

quadratic equation, 39

ray tracing, 6, 13
restitution, see collision response

separating axis theorem, 20
signed distance field, 35, 36
simplex, 20
SOLID, see collision detection
sort

bubble sort, 5
insertion sort, 5

spatial data structure
BSP tree

dynamically adjusted, 23–28
collision testing, 12–13
hierarchy building, 9–12
octree, 31

sphere, 14
sum object, 19
surface area heuristic, 10
sweep-and-prune, see collision detection

texturing
compression

ASTC, 36
tolerance verification, 18
top-down, see collision detection
transform

rigid-body
collision detection, 16

tree
balanced, 12, 16
binary, 9
k-ary tree, 9


