

Displays en Display

A Proposal for Standard Graphics

Environments

One concern of the computer
graphics community has been the
efficiency of rendering algorithms.
Buyers faced with a variety of hard-
ware graphics acceleralors would
like to know the average display rate
of each machine. In such fields as
ray lracing, rescarchers continue to
explore which is the fastest way to
find the closest intersection poinl
for a ray and a set of primitives. The
problem faced by these and other
people involved in computer graphics
is a lack of standards.

Within the hardware field there
has been some progress in solving
this problem. A frequently quoted
number for a graphics accelerator
is the number of polygons per sec-
ond that can be output to the
screen. A number of companies use
the same standard, defining an
average polygon to be a randomly
oriented square which is 10x 10
pixels in size. This is a useful met-
ric of one kind of raw processing
power. Some other measurements
have also been used, such as the
relation between polygon size and
the polygon draw rate.

In such research areas as ray trac-
ing, a second approach is used. The
rendering of a single primitive,
such as a polygon, can be affected
by the other primitives in the envi-
ronment. For example, another
primitive could cast a shadow or be

November 1987

Eric Haines, 3D/Eye Inc.

Figure 1. Recursive tetrahedral
pyramid.

seen in reflection from the primi-
tive being rendered. This has led to
timing comparisons based on the
time for calculating ray intersec-
tions, instead of a primitives-per-
second rate. One of the problems
with trying to compare ray intersec-
tion times is that there are almost
no standard test environments. One
researcher will ray trace a car;
another, a tree. The question arises,
“How many trees to the Camaro?”’
My proposal is that we should all
be using the same environments. 1
originally heard of this idea from
Don Greenberg while I was in Cor-

nell’s Program of Computer Graphics.

He and Ed Catmull had once dis-
cussed producing some environ-
ments that would be used as
standards for testing rendering
algorithms. A few years later, Tim

0272-1716/87/1100-0003$01.00 = 1987 IEEE

Editor: Frank Crow

Figure 2. Fractal mountain with
spheres.

Kay presented a paper on efficient
ray tracing at SIGGRAPH 86. He
offered his database descriptions to
any researcher who wanted to use
them. Discussions with him and
other researchers led me to create a
number of scenes for testing ray-
tracing algorithms.

The databases are fairly familiar
and “standard’ to the graphics
community. The scenes are gener-
ated by the “Standard Procedural
Database” package, or SPD for
short. Each database is generated
by a program written in C. The out-
put of the program is in text, with
information about the view, lighting
conditions, and primitives being
output in a simple formal. Presently
polygons, polygonal patches (poly-
gons with a different surface nor-
mal at each vertex), spheres, cylinders,
and cones are supported. The
researcher has to write a program
to translate these simple output
data into the format needed by the
algorithm or hardware being tested.

The programs use simple rules to
create complex databases. One
advantage of using programs to

Figure 3. Tree.

Figure 4. Dodecahedral rings.

generate databases is that the pro-
grams can be fairly short. For exam-
ple, the average SPD generator
program is about three pages of
code, not including the common
library of routines. Another advan-
tage is that the geometric descrip-
tion of the output databases can be
controlled directly. One example is
that curved surfaces can also be
output as sets of polygonal patches.
This allows the database to be used
to test both ray-tracing algorithms,
which normally would use the sim-
ple geometric description, and
hardware graphics accelerators,
which tend to use polygonalized
representations.

If you represent the databases by

programs, you can also change the
database size. Each program has a
growth factor built into it so that the
number of primitives is adjustable.
Mandelbrot and Norton originally
generated the tetrahedron in Figure
1," and Glassner first used it for
testing ray tracing.” Kay and Kajiya
also used it,® as did Arvo and Kirk.*
There are some 4096 triangles in
the scene. Various researchers have
used different numbers of tetrahe-
drons filling the same sized space.
By changing the growth factor in
the generating program, you can
change these variants. Another
advantage of the growth factor is
that you can examine the relation-
ship between an algorithm’s per-
formance and database.

The fractal mountain in Figure 2
is another common scene, inspired
by Peter Watterberg’s work on the
cover of the advance program for
SIGGRAPH 85. The glass balls are
in the environment so that algorithms
would have to deal with refraction
and reflection rays. To test hard-
ware graphics accelerators, the
spheres are polygonalized.

Aono and Kunii’s method is used
in Figure 3 to generate a tree,’ con-
sisting of a total of 9190 spheres and
cones. Each database in the SPD
package has a default database size
of close to 10,000 primitives, which

was chosen as representative of an
average-sized scene. Since each
database program has a growth fac-
tor, the database size can be increased
to provide more complicated envi-
ronments for future testing.

The rings database in Figure 4 is
one of the lengthiest test scenes to
render. The scenes in the SPD pack-
age were chosen to generate very
different kinds of space, with differ-
ent surface properties, different
numbers of lights, and different
background characteristics. The
rings scene takes a long time to ray
trace because of some of these fac-
tors. It is highly reflective, all rays
from the eye hit some primitive, and
a large number of shadow rays are
generated.

Figure 5 is a set of gears. This
scene was designed to test how vari-
ous algorithms and kinds of hard-
ware deal with large, many-sided,
concave polygons. It also includes a
large number of reflection and
refraction rays.

I call the object in Figure 6 a
“sphereflake,” since it is something
like a three-dimensional snowflake
curve. This scene was ray traced by
the AT&T Pixel Machine.in about
half a minute—a rather amazing
feat! This timing brings up one dif-
ficulty of comparing researchers’
results. Comparison between differ-
ent hidden-surface graphics acceler-
ators can be made in a straightforward
manner using these databases.
Given the conditions for perform-
ing timing tests of the databases
(which are included as a part of the
SPD package), a hardware accelera-
tor will perform at a certain abso-
lute rate in terms of polygons per
second. An advantage of the SPD
package over the randomly oriented
polygon test is that such hardware
features as lights, specular high-
lighting, and transparency are also
tested.

Ray-tracing algorithms should not
be compared using raw speed, since
the software is run on different
machines and in different languages.
Adjustments for these factors can
theoretically be factored into the
speed (e.g., LINPACKS testing), but
megaflops ratings do not necessar-
ily reflect true machine perform-
ance. Because of this, researchers
often record such additional factors

IEEE Computer Graphics & Applications

Figure 5. Meshed gears.

as the number of ray/object inter-
section calculations performed.
When discussed in these terms, two
different ray tracers can be com-
pared on a more meaningful basis.
By understanding the performance
of different ray-tracing algorithms
for a variety of scenes, the factors
that affect performance of the
algorithms can be recognized. For
this reason, the SPD package is
meant to be taken as a whole, with
each scene having its own distinct
characteristics.

The SPD package is in the public
domain and can be accessed in a
number of ways. Netlib® is distribut-
ing the package for free. For those
with access to the Arpanet, write to
“netlib@anl-mcs.arpa.” If electronic
mail on the UNIX UUCP network is
available, write to ‘“research!netlib.”
In either case, send the one-line
message, ‘‘Send Haines from
graphics.”

An early, incomplete version of
the SPD package was printed as an
appendix in the notes for the
“Introduction to Ray Tracing”
course given at SIGGRAPH 87. For
the IBM PC, the package may be

November 1987

Figure 6. Sphereflake.

available on a 360K 5-1/4” floppy :
disk. Write to me for details. If none References

of these media are available to you,

1. B.B. Mandelbrot, The Fractal Geometry
send $4 for the latest printed ver- of Nature, W.H. Freeman, New York,
sion from me: Eric Haines, 3D/Eye 1983, p. 143.

Inc., 410 E. Upland Rd, Ithaca, NY 2. A.S. Glassner, ““Subdivision for Fast
14850 Ray Tracing,” CG&A, Oct. 1984, pp.
¥ 15-22.

w

. T.L. Kay and JT. Kajiya, ‘‘Ray Tracing

Presently this package is simply a Complex Scenes,” Computer Graphics

proposal. Your feedback is needed (Proc. SIGGRAPH 86), Aug., pp.
on a number of questions, such as 269-278.
what constitutes an average scene 4.]. Arvo and D. Kirk, “Fast Ray Tracing

for your applications, what primi- by Ray Classification,” Computer

tives do you use, and what are your g;“é’?.’éi (Fide SIEGE 2 07 il

opinions on the package in general? 5. M. Aono and T.L. Kunii, “Botanical

Timings and statistics for graphics Tree Image Generation,” CG&A, May
g grap
accelerators and different ray-tracing 1984, pp. 10-34. —
algorithms are also most welcome. 6.].J. Dongarra and E. Grosse, “Distribu-
My electronic mail address: hpfcla! e QR L

2 Electronic Mail,” Comm. ACM, May
hpfcrsleyelerich@hplabs. HRCOM. H 1987, pp. 403-407.

Eric Haines is a senior software engineer at 3D/Eye in Ithaca,
New York. His interests and responsibilities include creating a
ray-tracing system for image synthesis. Previ-
ously he was a software engineer at RCA
Astro-Electronics.

Haines received a BS in computer science
from Rensselaer Polytechnic Institute in 1980
and an MS in computer graphics from Cor-
nell University in 1986. He is a member of
ACM.

He can be contacted at 3D/Eye, 410 E. Upland
Rd.. Ithaca, NY 14850 or hpfcla'hpfcrsleyelerich@hplabs. HPCOM.

