_ __ ______ _ __
' ) ) / ' ) )
/--' __. __ , --/ __ __. _. o ____ _, / / _ , , , _
/ \_(_/|_/ (_/_ (_/ / (_(_/|_(__<_/ / <_(_)_ / (_ writes:
I understand that Radiance stores images as 32-Bit RGB. How does
an adjustment of exposure effect the colors displayed. Obviously it
affects the brightness of the image, but what are the differences between
exposure and gamma correction? Are both needed? If a light source is too
dim, I want to know in absolute terms.
This is a bit confusing to me because I realize that the eye is
constantly readjusting its exposure. I would like to be able to say that
the image is a "realistic" simulation of a scene, but can this really be
done?
----
Greg replies:
You've touched on a very complicated issue. The 32-bit format used in
Radiance stores a common 1-byte exponent and linear (uncorrected gamma)
values. This provides better than 1% accuracy over a dynamic range of about
10^30:1, compared to about 3% accuracy over a 100:1 dynamic range for 24-bit
gamma-corrected color.
Changing the exposure of a Radiance image changes only the relative brightness
of the image. Gamma correction is meaningful only in the presence of a
monitor or display device with a power law response function. Gamma
correction is an imperfect attempt to compensate for this response function to
get back linear radiances. Thus, applying the proper gamma correction for
your monitor merely gives you a linear correlation between CRT radiance and
the radiance value calculated. (Radiance is named after the value it
calculates, in case you didn't already know.)
However, as you correctly pointed out, linear radiances are not necessarily
what you want to have displayed. Since the dynamic range of a CRT is limited
to less than 100:1 in most environments, mapping calculated radiances to such
a small range of dispayable values does not necessarily evoke the same
response from the viewer that the actual scene would. The film industry has
known this for many years, and has a host of processing and exposure
techniques for dealing with the problem. Even though computer graphics
provides us with much greater flexibility in designing our input to output
radiance mapping, we have only just begun to consider the problem, and it has
not gotten nearly the attention it deserves. (If you are interested in
learning more on the topic, I suggest you check out the excellent CG+A article
[not out yet, should be good. - EAH] and longer Georgia Tech technical report
by Jack Tumblin and Holly Rushmeier.)
Color is an even stickier problem. Gary Meyer and others have explored a
little the problem of mapping out-of-gamut colors to a CRT, but offhand I
don't know what work has been done on handling clipped (over-bright) values.
This is another interesting perceptual issue ripe for exploration.
The best you can currently claim for a computer graphics rendering is that
photography would produce similar results. Combined with accurate luminance
calculations, this should be enough to convince most people. In absolute
terms, the only way to know is by understanding lighting design and
luminance/illuminance levels appropriate to the task. It will be many years
before we will have displays capable of SHOWING us unambiguously whether or
not a given lighting level is adequate.
[Graphics Gems II has an article "Real Pixels" and code by Greg Ward for using
32 bit format for RGB. The on-line distribution has more code than the book,
as I recall. - EAH]
-------------------------------------------------------------------------------
Bounding Areas for Ray/Polygon Intersection, by Steve Worley
(spworley@netcom.com) and Eric Haines (erich@acm.org)
The last issue of RTN (v5n3) was devoted to fast methods of intersecting rays
with polygons and particularly the subtask of determining whether a single
point was inside a 2D polygon. We (Eric and Steve) have been discussing
another aspect of polygon intersection: the best type of bounding volume to
surround polygons with, particularly complex ones that have enough sides that
the "is the point in the polygon?" test gets slow.
One particularly useful trick if you do have a bounding volume around the
polygon (say an axis-aligned cube) is to check the ray/plane intersection
POINT with the bounding volume. The point in volume test is very cheap (6
compares) and provides a way to trivially reject hits that are far from the
polygon. This quick rejection method has been developed by several people
independently, and Andrew Woo has a nice description in Graphics Gems I on
page 394. The only possible danger of using this extra rejection is that that
a polygon laying on an axis-aligned plane will have a bounding box with no
depth, and the "ray hits box?" and/or "point in box?" algorithms need to be
robust enough to correctly handle it.
The method is therefore:
1) Test to see if plane's normal is facing you (50% culling right here!)
2) Test to see if ray intersects bounding cube at all
3) Intersect the ray with polygon's plane
4) Test intersection POINT with bounding cube
5) Test intersection point for in/out polygon
But what if you eliminated the ray/bounding cube test (#2) completely and for
ALL (facing) polygons you computed the ray/plane intersection and tested that
point with the bounds? If you count up the ray/bounding box test's costs, you
need 3 adds, 3 divides, and 13 compares (This is from Woo's algorithm in GG
I.) But intersection with a plane only costs 5 adds, 5 mults, and 2 compares,
since you already computed the dot product to test whether the plane was
facing you or not. So basically you can skip right ahead to the "is the
ray/plane intersection POINT in the bounding box" (which provides better
rejection than the ray/cube intersection) and you'll be ahead speed-wise.
Now here's a neat trick: if you're now JUST using the bounding volume to
provide point rejection (not ray rejection) we might as well do it ONLY in the
2D projected plane we also do our in-out tests in. We don't even have to
compute that third component (the one we don't use for testing polygon in/out
anyway,) saving a mult or two. We basically have a 2D bounding AREA and not a
bounding volume. The third coordinate did provide some additional rejection,
but how effective it is depends on the plane's angle: the Z coordinate is a
linear function of X and Y. This also avoids any ugliness from a zero-height
bounding box.
The bounding AREA will do a fast rejection of trivial points far away from the
center of interest. RTNv5n3 had several discussions of different test
methods, but all of them might be helped by this trivial rejection depending
on the complexity of the polygon. (Any bounding for a triangle is probably a
waste, but if you have a 500 sided polygon, doing at least a gross rejection
of far off points is going to be a severe win.)
NOTE: This does not mean that a bounding volume is necessarily a bad idea for
a polygonal object! It DOES mean that a bounding volume for a SINGLE polygon
is definitely slower than doing a 2D point rejection instead.
The question is for these complex-enough polygons, what type of rejection to
use? (The rest of this discussion assumes the XY plane is the plane being
used for the polygon test, but XZ or YZ are obviously just the same.) The
bounding square (max/min X,Y) is by far the most obvious and useful, since it
only costs 4 compares and will reject all of the way-off hits. A tighter
bound might be useful for a more complex figure, however. One logical further
test would be to measure the maximum extents of the polygon along other
directions such as the 45 and 135 degree angles: you sort of get a tight
shrink-wrapped octagon bounding your polygon.
If you want to check the 45 degree angles, you do a separate min/max test on
the value sqrt(1/2)*X+sqrt(1/2)*Y, which is just a coordinate rotation of the
point by 45 degrees. The 135 degree rotation is done by testing
sqrt(1/2)*X-sqrt(1/2)*Y. The extra 4 rejections therefore cost 2 adds, 4
mults, and 2 compares.
Now here's a really sneaky trick: What if you change to an *UNNORMALIZED*
coordinate system. Don't check sqrt(1/2)*X+sqrt(1/2)*Y, check instead X+Y!
The maximum extent you're checking against absorbs that normalization
constant, but that is the only thing you ever use these min/max numbers for so
it is not a problem.
So to evaluate the shrink wrapped octagon, you:
1) Check min/max X span 2 compares
2) Check min/max Y span 2 compares
3) Compute A=X+Y 1 add
4) Check min/max A span 2 compares
5) Compute B=X-Y 1 add
6) Check min/max B span 2 compares
You could continue into 16 sided shrinkwrapped hulls if you really need to
(C=A+X D=B+X E=A+Y F=B-Y) but this is probably tight enough for anybody.
This type of bounding box is useful for other types of point sampling as well;
solid texturing evaluates functions of a single point and they often have a
region where a color or pattern is applied to a central location and outlying
areas are left alone or colored with a background. A 16 sided bounding volume
(this time in 3D) only takes 16 compares and 6 adds (by coincidence, the same
as 2D.) This has been implemented in several textures, in particular one that
renders Bezier outline fonts on an object's surface.
---
A very different method for trivial rejection of 2D points takes much more
precomputation but has the additional benefit of trivial ACCEPTANCE.
Basically, you impose a uniform grid onto the XY plane and classify each box
in the grid as inside, outside, or indeterminate. Only when a point lies in
an "indeterminate" box does the full point-in-polygon routine need to be
called. Any point that falls outside the grid is automatically rejected.
(The grid is sized to just fit over the polygon.) This method is especially
effective for many-sided but simple polygons that have a lot of "empty" inner
area since any hits on the inside away from the edges are quickly accepted.
This grid isn't too hard to make. You "render" each polygon segment into the
grid, marking any boxes the line touches with an ID meaning "indeterminate."
Flood fill any untouched boxes that lie along the outside edge of the grid
(using the N S E W neighbors) with a flag saying "outside." Then use the
"point in polygon" routine in the center of each of the remaining untouched
squares to determine its state, inside or outside. When you determine a new
square, you can flood fill its unchecked neighbors. This all works since the
only indeterminate boxes are the ones that edges pass through, and an edge
(and therefore an "indeterminate" box) will always separate any transition
between inside and outside. This will work for either winding number or
even-odd methods of point-in-polygon definition.
The lookup grid is expensive in terms of memory, but the speedup can be
significant especially for large or complex polygons. Each box in the grid
needs two bits of storage since there are three possibilities to choose from.
A cheaper but slower alternative is to use only one bit to encode the
in/out/indeterminate state. During precompute, count up the number of boxes
for acceptance and rejection, and encode the less common state as
indeterminate.
[I have implemented this algorithm and it works very well, giving you near
O(1) performance for "reasonable" data. I used the outlines of continents for
my polygons (from 164 to 1152 points) and had good results. This algorithm
would probably be good for GIS applications. The indeterminate cells can be
evaluated much faster by noting which edges actually pass through the cell.
Since you know the state of the corners of the cell (i.e. each corner is in
or out), you draw a line segment from your test point to the nearest cell
corner (or any corner, but the nearest should have less crossings). Using the
ideas of Mukesh Prasad in Graphics Gems II for line segment intersection
testing, you can quickly find how many crossings occur between the test point
and the cell corner and so know the test point's status. - EAH]
One implementation danger is in ROBUSTLY identifying each square in the lookup
grid that any edge passes though. A vertical or horizontal polygon edge might
lie right along the borders of a square in the lookup grid, or less commonly,
a line might pass diagonally through a corner of one of the squares of the
grid. In both cases it is probably best to be conservative and identify the
adjoining square(s) as indeterminate.
One modification of this algorithm can speed it up further. Instead of
recording just three states in the look-up grid, a fourth state meaning
"unprocessed" is added. During precomputation, you mark all of the
"indeterminate" squares as before, but you don't do anything else. (Your grid
after pre-computation will therefore be filled only with "indeterminate" and
"unprocessed" squares.) When you begin rendering, you use the grid as before,
but when you hit an "unprocessed" square, you do the point-in-polygon test,
record the answer in the grid, do the flood-fill of the neighbors, and return
the correct answer. This method is a little bit more complex to implement,
but you'll only end up doing the minimum amount of work building the grid
since you set it up partially "on demand."
----
These bounding area methods are useful complements to the point-in-polygon
test. They provide quick rejections (or acceptances) the number of times that
the (relatively) slow point in polygon routine is called, exactly the same way
that a bounding volume can provide quick rejection of ray/object
intersections.
-------------------------------------------------------------------------------
Simple, Fast Triangle Intersection, by Chris Green
(chrisg@cbmvax.cbm.commodore.com) and Steve Worley
(spworley@netcom.com)
Chris writes about RTNv5n3:
I am always surprised to see articles advocating angle tests,
intersection counting, or Barycentric coordinates for determining if an
intersection point is inside of a 3d dimensional triangle, when the simple way
of determining this is also the fastest, if you can live with a few more bytes
stored per triangle.
My Method:
Store with each triangle 2 indices, i1 and i2. These are the
coordinate offsets for the two axes that will be considered in the test. (the
axis with the largest component in the normal vector is dropped, as usual).
Store the 2 coefficients and the 1 constant of the "inside-outside" equation
of each edge.
To test for intersection, calculate C[0]*X[i1]+C[1]*X[i2]+C[2] (X is
the intersection coordinate, and C are the 3 constants for the linear equation
calculated at setup time) over all 3 edges. If any of them have a negative
(or positive depending upon which convention you choose) result, return
NO_INTERSECTION.
Assuming hardware multiply, this can be coded extremely efficiently,
and can take advantage of multiply-accumulate instructions if they are
available. In fact, with a fast MAC instruction, it might be more efficient
to skip the coordinate indexing all together and just use the 3d equation of
the plane passing through the edge perpendicular to the triangle on some
architectures.
The only further optimization I take is that I store the edge
equations sorted by the area of the 2d bounding volume of the triangle which
is outside of that edge.
In 68040 code, this all boils down to:
move.l 0(a5,d6.w),d4 ; d6=i1, a5 = &intersection point
move.l 0(a5,d7.w),d3 ; d7=i2
muls.l (a4)+,d0:d4 ; C0*X1
muls.l (a4)+,d1:d3 ; C1*X2
add.l d3,d4
addx.l d1,d0 ; C0*X1+c1*x2
movem.l (a4)+,d1/d3 ; fetch 64 bit constant term
add.l d3,d4
addx.l d1,d0 ; c0*x1+c1*x2+c2
bmi.s no_hit3 ; outside?
repeated 3 times.
--------
Reply from Eric Haines:
I'll put your note in the next RTN - thanks. Berlin, in the truly
obscure reference
%A E.P. Berlin, Jr.
%T Efficiency Considerations in Image Synthesis
%B SIGGRAPH '85 course notes, volume 11
%D July 1985
%K polygon intersection
gives the same method you do (he thinks of it as three planes). I assume that
your method works for convex polygons only, unless you test all triangles
within the polygon and check the parity [see RTNv5n3 for more information].
The catch is, most people don't code in assembler (the counting
crossings test is darned fast in assembler). However, your test is darned
fast anyway, at least for simple polygons. The extra memory is something of a
drawback, but who can complain?
I coded it up (looked pretty efficient) and tried it in my test suite.
Here are the results:
For random polygons:
Number of vertices
3 4 5 3-7 20 100
plane 1.15 1.88 2.81 2.91 16.10 87.02
macmartin 1.90 2.33 2.76 2.67 10.63 51.47
inside % 6.78 11.78 13.11 12.22 26.22 35.67
For regular polygons:
Number of vertices
3 4 5 3-7 20 100
plane 1.22 2.23 3.25 3.36 16.67 86.51
macmartin 2.33 2.80 3.03 3.10 6.31 23.78
inside % 33.22 51.00 60.22 55.22 77.44 80.22
Admittedly, for the regular polygons I could do the test for the plane set
based on "first hit means quit", since the regular polygons are convex. This
will result in faster timings for it (as it would for the macmartin tests: if
two crossings are found while doing the macmartin test for convex polygons,
then you can quit). It's cool that your test is better for 3 and 4 vertex
polygons, since these are real common.
--------
Chris replies:
Thinking about my method applied to polygons with large (>4) numbers
of sides, I realized that the edge equations should be stored in bit-reversed
order, assuming some bounding volume that reduces PIP tests to only those
points which are somewhat near the polygon, and also assuming most polygons
are relatively regular.
Imagine an octagon surrounded by a rough bounding box. If the first
side didn't clip off the point, the 2nd isn't that likely to if it is at a
similar angle to the first one. But the opposite side is more likely to. The
optimal thing to do is to calculate the area which is inside the bounding box
which has not yet been clipped off by one of the previous edges, but this
would involve calculating intersections of the edges with each other, which is
probably too much work to do on a polygon which might only cover 10 pixels on
the output image.
The algorithm is to check the point against the edge equations of each
edge of the convex polygon (the "inside-outside" equation of the edge). i.e:
if v0 is one vertex and v1 is another, and v2 is another point on the
polygon,
a=v1.x-v0.x
b=-(v1.y-v0.y)
c=-(a*v1.y+b*v1.x)
if (a*v2.x+b*v2.y+c>0) then negate a,b,c to make the inside-outside
sense correct.
Which coordinate x and y are depends, of course, upon the surface
normal of the triangle.
intersect:
x,y=intersection point of ray and plane projected onto the correct axis.
for(each edge)
if (x*a[i]+y*b[i]+c[i] >0) then no_intersection
All the abc[i]'s are sorted in such a way (based upon the bounding volume) so
as to make the probability high that the first test will reject the point.
For a many-sided (roughly regular) convex polygon, storing the sides in bit
reversed order (for an 8 sided polygon this is 0,4,2,6,1,5,3,7) causes the
loop above to test the point against a bounding volume which "homes-in" on
the actual shape of the polygon. For a triangle, I store the sides based upon
the area of the triangle cut out by the intersection of the edge and the
bounding box.
----
Steve Worley (spworley@netcom.com) had some independent observations, also
realizing that half-plane testing should be fast:
In RTNv5n3, Peter Shirley wrote about a fast triangle test using barycentric
coordinates. It seems to me that the fastest method (by far!) to test
whether a point is in a 2D triangle is to just do three half-plane tests.
Represent each of the lines that make up the triangle with two real numbers A
and B such that the line is described by the formula Ax+By=1. If the triangle
lies below that line, a point on the "wrong" side of the line will satisfy the
inequality Ax+By>1. If the triangle is "above" the line, you just test
Ax+By<1 instead. You do this test for each of the three triangle sides, and
immediately return if it fails at any time. If it passes all three tests, the
point is in the triangle. The computational cost is two multiplies, an add,
and two compares for each test, so worst case cost is 6 mults, 3 adds, 6
compares. However, you're more likely to get rejected on the first tests, and
the mean amount of computation for a completely random triangle turns out to
be exactly 3.5 mults, 1.75 adds, and 3.5 compares.
A slightly faster method would be to write each line in the form Cx+y=D
instead, which would save a multiply on each test. However this causes a
problem because of perfectly vertical lines which would make C and D become
infinite. An extra compare would be needed to check for this case so that the
more general Ax+By=1 test could be substituted.
While this method is probably about as fast as a 2D point in triangle test can
get, Shirley's barycentric method has one big advantage in that AFTER a hit,
the computed coordinates can be immediately used for Gouraud or Phong shading.
Depending on the percentages of tests versus hits your application gets, it
might be cheaper to use only barycentric if typical tests have a high enough
hit rate. Note also that both the barycentric and the half-plane rejection
methods will work on any convex polygon.
-------------------------------------------------------------------------------
Ray Tracing Roundup
The big news is that there is now an FTP site with some excellent 3D model
datasets available. Go to avalon.chinalake.navy.mil (129.131.31.11). If you
can't reach it, or your connection is slow, the site is mirrored on
ftp.kpc.com (144.52.120.9) in /pub/mirror/avalon. The objects in
obj/Viewpoint are of particularly high quality: there's a cow, foot bones,
Beethoven's bust, a brontosaurus, a toy galleon, and I forget all what else,
plus many road vehicles, a helicopter, etc. There are also the Capone
datasets, in case you didn't get yours free at SIGGRAPH at the Viewpoint
booth. I liked these .obj files well enough that I even wrote an obj2nff awk
script (which is also FTPable from avalon - dig around). And this is just one
set of models - there are others from many other sources. If they're missing
your favorite dataset, upload it to them. contact: Francisco X DeJesus
(dejesus@archimedes.chinalake.navy.mil)
--------
The February 1993 issue of National Geographic has a fold-out image of Venus
on page 37. This image was rendered by David Anderson at SMU using Craig
Kolb's Rayshade software. Also, the computer firm Santa Cruz Operation is
evidently using/going to use images made from public scene files by Rayshade
in showing off their SCO Open Desktop.
--------
A new book on ray-tracing has come out, and comes with a disk of code for
"Bob", a ray tracer (of at least 8K lines of code). Note that Stephen Coy is
also the creator of the VIVID ray tracer. I hope to review this book for the
next issue of the RTN - EAH. It's at least 8k lines of code.
Photorealism & Ray Tracing in C
Christopher D. Watkins, Stephen B. Coy, and Mark Finlay
M&T Books, a division of M&T Publishing, Inc.
411 Borel Avenue, Suite 100
San Mateo, CA 94402 (C) 1992
ISBN 1-55851-247-0
Some comments from Stephen Coy:
Bob, the raytracer in the book, is basically Vivid with a few, minor changes.
The changes tend to center around the parser. I didn't want to use flex and
byacc for the book so I spent a long day writing the parser from scratch in C.
Everything works except allowing the user to perform math functions in the
input files. I'd like to see some benchmarks with Bob vs some of the other
tracers out there. Even though it is distantly derived from MTV I think it
will generally beat MTV by quite a bit.
Before you ask, the name Bob just sort of happened. When I was working on the
code I got tired of talking to Chris and calling it "the ray tracer for the
book." I suggested that we just call it Bob until we came up with a better
name. The deadlines came first.
--------
Another new book is _Practical Ray Tracing in C_ by Craig A. Lindley. It
contains a disk for the IBM PC and the ray tracer is DKB Trace. I assume it
has the same features as the PD one on the net (and vice versa). The book is
evidently a $49.95 paperback (with disk of course). (Tom Wilson,
wilson@eola.cs.ucf.edu)
[Does anyone know anything about this book? I haven't seen it and am unwilling
to blow bucks on it. Any review (biased or no) is appreciated! - EAH]
--------
For those of you who still believe free software is worthless, a comment from
a guy at NASA on Radiance [an "industrial strength" lighting simulator free
from Greg Ward - a ray tracer and much more]:
By the way, your package is a very good one, in just 2 weeks we were able to
trace complex space shuttle lighting very easily. Nice work.
--------
The source code from the notes of Siggraph '92 Course 23 (Procedural Modeling
and Rendering Techniques) is now available for anonymous ftp from
archive.cis.ohio-state.edu as pub/siggraph92/siggraph92_C23.shar . Without a
copy of the course notes, these files may not make sense. (David Ebert,
ebert@hockey.cis.ohio-state.edu)
--------
Human heads and an anatomically correct human skull data are available. The
data is a mesh and the demo contains convert utilities to translate into
various other formats, eg. ASCII, Wavefront, IGES, etc. The demo runs on a
SGI IRIS workstation. Ftp from taurus.cs.nps.navy.mil, login anonymous,
password guest, file pub/dabro/cyberware_demo.tar.Z . (George Dabrowski,
Cyberware Labs, dabro@taurus.cs.nps.navy.mil)
--------
A simple public-domain radiosity package is available at ftp.yorku.ca (was:
nexus.yorku.ca) (130.63.9.66) in /pub/reports/Radiosity_code.tar.Z (also
mirrored at wuarchive.wustl.edu). The package contains C code for a
progressive refinement solution using the following algorithms:
Wallace (Ray-traced form-factors),
Haines (Shaft Culling), using automatic hierarchical
bounding creation (Salmon 87)
Chen (Progressive refinement with jitter hemicubes)
A partial implementation of Hanrahan's BF-Refinement algorithm.
Additionally, there are model preprocessors for conversion from QuickModel and
OFF formats, with geometric constraints of Baum's 91 Siggraph paper partially
included; and a scene walk through program with simple Gouraud shading. The
solution can be run stand-alone on any Unix box, but the walk-through requires
a SGI 4D. (Bernard Kwok, g-kwok@cs.yorku.ca)
--------
Version 2.2 of x3d, a 3D wireframe / hidden line / hidden surface viewer that
runs under X11, is now available via anonymous ftp at castlab.engr.wisc.edu
(144.92.60.140) and is found as /pub/x3d.2.2.tar.Z. (Mark Spychalla,
spy@castlab.engr.wisc.edu)
--------
If you use AutoCAD 11 Advanced Modelling Extensions (AME) software to build 3D
objects, it is now possible to convert these models to a raytracer compatible
scene file format (SCN), which is used by the RTrace package (raytracer plus
utilities). The converter code is available at asterix.inescn.pt
[192.35.246.17] in directory pub/RTrace/scene-conv/acad (files scn.h and
sol2scn.h).
A MAC version of RTrace 1.0 version (beta) is available in directory
pub/RTrace/Macintosh at asterix.inescn.pt [192.35.246.17] The code was made by
me; Reid Judd (reid.judd@east.sun.com) and Greg Ferrar
(gregt@function.mps.ohio-state.edu) made the Mac port. (Antonio Costa,
acc@asterix.inescn.pt)
--------
A new release of Tcl-SIPP is available from:
ftp.uu.net:/graphics/3D/tsipp.3.0b.tar.Z
and should be available soon from:
barkley.berkeley.edu:/tcl/extensions/tsipp3.0b.tar.Z
Tcl-SIPP is a 3D image specification and rendering toolkit for use with Tcl
and Tk.
It provides a Tcl command interface to SIPP, the SImple Polygon Processor
library. This is used for creating 3-dimensional scenes and rendering them
using a scanline z-buffer algorithm. The Tcl interpretive programming
language is used to provide a powerful, yet simple interface to this library.
The scene may be written to either a PPM format file, as defined by the
PBMPlus toolkit or a RLE file, as defined by the Utah Raster Toolkit.
An interface to render to the photo widget in the Tk X11 toolkit is also
provided. Events such as button presses may take place while rendering is
in progress. (markd@NeoSoft.com, Mark Diekhans)
--------
Under princeton.edu:pub/Graphics/rayshade.4.0, you'll find several new
directories, including:
Contrib User-contributed enhancements, header files, etc.
Amiga/DOS/MAC/OS2 Ports to various strange operating systems.
Pix Rayshade-generated images, texture maps, etc.
There have been other changes to the archive; poke around and you'll
undoubtedly discover them.
----
I've placed all of the old rayshade-users messages on the princeton archive:
princeton.edu:pub/Graphics/rayshade-users/Feb-Sep92.Z.
This file is completely unedited -- if it was sent to the list between
February and September 28th, it appears here. If some brave soul wants to
edit out the chaff, I'd be happy to replace the file with something more
appropriate.
----
Utah RLE viewers for the IBM PC are available at
cad0.arch.unsw.edu.au:/pub/rayshade/dos. They include:
drawutah13.exe SVGA Utah rle viewer.
drwrle15.exe Utah rle viewer (Tseng Labs HiSierra 15 bit DAC).
drwrle24.exe Utah rle viewer (Tseng Labs HiSierra 24 bit DAC).
The drawutah.exe may also be available from princeton.edu.
----
A new rsdefs package for Rayshade is available. Changes made were: new
surfaces added (copper, several diamond, several glasses to name a few), fixed
documentation -- all the examples should work now, made primitives more easy
to use, added surface information file -- information for developing new
surfaces (just RI values and some color info sofar), added a script for batch
testing surfaces. Larry Coffin (lcoffin@clciris.chem.umr.edu)
----
NCSA Polyview 3.0 is now available via anonymous FTP to ftp.ncsa.uiuc.edu
(141.142.20.50) in /SGI/Polyview3.0. Polyview 3.0 is a software tool for
interactive visualization and analysis of 3D geometrical structures. Polyview
3.0 reads data files in NCSA HDF Vset format and automatically derives
animation sequences based on available information. Script-based and
graphical user interfaces complement each other in a seamless fashion to allow
the easy creation of movie-style animations. Rayshade users on SGIs may be
interested in this; among other things, it generates scene files in rayshade
4.0 format (and also in Pixar's RenderMan format). (Marc Andreessen,
marca@ncsa.uiuc.edu)
--------
POLYRAY is a ray tracer that is "more difficult to use but substantially
faster". Version 1.4 is available at faramir(or
ftp).informatik.uni-oldenburg.de (134.106.1.9) in
pub/dkbtrace/incoming/polyray. Note that the file has probably moved
somewhere by now. This site also contains a number of POV & DKBtrace scene
files and images, as well as 3d fonts for POV and Vivid (Andy Haveland,
andy@osea.demon.co.uk)
--------
If you're on (or have access to) an Amiga system, then you may want to check
out Vertex, a shareware ($40) 3D object editor/converter. It will read
Wavefront .obj files and save them in Imagine, Sculpt 3D, Lightwave RayShade,
GEO and 3D Professional file formats. While not perfect, it does correctly
read the Wavefront geometry from the file, and you can modify smoothing and
face colors right in Vertex. (Alex_-_DeBurie@cup.portal.com)
--------
White Sands Missile Range (192.88.110.20) in pd1: carries
Thunder, a ray tracer from Germany.
--------
A 512x512x24 bit Mandrill is available in PPM and JPEG formats from
popeye.genie.uottawa.ca, in /pub/pics. (Dominic Richens,
dominic@shamin.genie.uottawa.ca)
--------
The cameraman image is available via anonymous ftp from eedsp.gatech.edu in
database/images/camera.256. The file is unformatted byte format with image
dimensions 256x256. (Stan Reeves, sjreeves@eng.auburn.edu)
--------
Graphtal is a L-system interpreter, and includes a number of features,
including animation support, X11 previewer, z-buffer preview, and output for
rayshade. It is in C++, and currently works on SparcStations, RS/6000's, and
DEC Stations. The first public release of graphtal is now available via
anonymous ftp at iamsun.unibe.ch (130.92.64.10) and is found as
/Graphics/graphtal-1.0.tar.Z or
/Graphics/graphtal_no_bison_no_flex-1.0.tar.Z.
(Christoph Streit, streit@iam.unibe.ch)
--------
The Dr. Dobb's Journal's FTP directory ftp.mv.com /pub/ddj/packages has
Xsharp, a fairly fast hidden surface displayer for the IBM PC. Source code in
C and assembler is included, and Xsharp now has some simple texture mapping
capabilities.
--------
The GRAPHIC CONNECTION can be reached at the following numbers:
by modem: 503-591-8412
voice: 503-591-0134
FAX: 503-244-0919
V.32bis/V.42.bis MNP, 24 hours a day.
This BBS is owned and operated by Vertech Design, is located in Portland,
Oregon. TGC specializes in material/texture files, custom bitmap design,
graphics utilities and programs, and specialized scanning services. There
will also be a large message base with topic specific areas for all areas of
CAD and graphics support.
[I tried this BBS out some time ago, but had trouble getting any material
texture samples - the directory which was supposed to have these publicly
available was inaccessible, for some reason. I paged the sysop, but he didn't
seem to know what was wrong, either. - EAH]
--------
For 3D stereo supplies, one source is Reel 3D's mail order catalog:
Reel 3-D Enterprises, Inc.
P.O. Box 2368
Culver City
CA 90231
Phone (310)837-2368
Fax (310)558-1653
(Alexander Klein, editor of 3D-MAGAZIN, klein@nadia.stgt.sub.org)
--------
ftp.rahul.net [192.160.13.1]:/pub/bryanw has a number of programs related to
JPEG and MPEG generation and display. (Bryan Woodworth, bryanw@rahul.net)
--------
VIS-5D is a system for interactive visualization of 5-D gridded data sets such
as those made by numeric weather models. One can make isosurfaces, contour
line slices, colored slices, wind vector slices, wind trajectories, etc. of
data in a 3-D grid and then rotate and animate the image in realtime. There
are also features for text annotation and video production. Systems
supported: SGI, IBM RS/6000, Stardent/Stellar. FTP from iris.ssec.wisc.edu
(144.92.108.63). It is also available on wuarchive.wustl.edu in the directory
graphics/graphics/packages. (brianp@ssec.wisc.edu, Brian Paul)
--------
Disc-1 Graphics- is a collection of more than 426 MegaBytes of popular public
domain, shareware, and freeware graphics programs and data files. The disc
contains more than 1200 programs, 16,000 files. The cost of the disc is
$24.95 plus $5 to cover shipping and handling ($15 overseas). Orders may be
FAXed to (916)-872-3826.
Prepaid orders may be mailed to : Knowledge Media
436 Nunnelley Rd. Suite B
Paradise,CA 95969, USA
(Paul Benson, pbenson@cscihp.ecst.csuchico.edu)
--------
The Copyright Guide from the ASMP (American Society of Media Photographers) is
available in digital form now. FTP from ftp.eff.org:
pub/cud/papers/asmp-guide, or ftp.ee.mu.oz.au:
pub/text/CuD/papers/asmp-guide.Z, or ftp.moink.nmsu.edu. Although written
from a photographers perspective the Guide might help to clear up a few points
of confusion about copyright protection of images. (Don Smith,
dsp@halcyon.com)
-------------------------------------------------------------------------------
Spectrum Overview, edited by Nick Fotis
Here's a glimpse of the SPECTRUM rendering testbed proposed by A.Glassner in
the Frontiers In Resdering Course Note 12 from SIGGRAPH '91:
"... the architecture supports the following features:
o Standard radiosity and distribution ray tracing features (energy
balancing, soft shadows, depth of field, motion blur, spectral
sampling, etc.)
o User control of most rendering parameters (with defaults)
o Programmable shaders, selected by the user in run time (including
textures)
o Programmable sampling techniques. Any sampling strategy may be used,
including (bu not limited to) staticc or adaptive, uniform or noisy.
Any sampler may be used to draw samples on any two-dimensional
distribution. Higher-dimensional samplers may be used as well.
[nfotis: I think that would be a better idea to separate rendering and
reconstruction, as G.Ward does with Radiance]
o Programmable reconstruction techniques, appropriate for any two-
dimensional signal, such as illumination spheres and screen images.
o Programmable radiation patterns for light emitters.
o Programmable cameras, selected by the user at run time.
o Easily-extended object and meta-object classes.
o Still and animated sequence rendering.
o Any geometric object may be a light emitter.
o Sampling and reconstruction are techniques unified across screen and
object domains. All sampling procedures are interchangeable, whether
they are sampling the image plane, the illumination arriving at an
object surface, the texture of a region, etc. Similarly,
reconstruction techniques, are equally, generic and applicable to all
domains. A sampler is simply considered a technique for gathering
information on a two-dimensional distribution. Callback procedures
are used to control a sampler for the different purposes of screen
sampling, shading, texturing, etc.
o Shaders receive as input a description of the illumination sphere.
They are not responsible for determining the incident illumination at
a point, and they may reconstruct a sampled illumination signal before
processing.
o The incident illumination sphere is described as a collection of
samples of the incident light. Typically, one determines this sphere
by first building a set of samples that are directed to light-emitting
objects; they return the color of the light foud along the ray,
whether it actually reached a light emitter or not. Then this set may
be passed to an adaptive sampler as a "seed", or starting signal.
This increases the likelihood that light emitters are sampled, and
allows the incident illumination sphere to be adaptively sampled until
the sampled signal meets the criteria for that sampler. This
illumination sphere is then passed to a shader for modulation vy the
bidirectional reflectance distribution function of the surface at this
point.
o Objects may be queried by a shader for information. This contrasts
with the Renderman model, where a shader may expect a number of
variables to be precomputed and available. Since the shaders in this
system are not precompiled from a special-purpose language, if is
difficult to determine a priori what information a shader requires
from an object. Thus each object contains a procedure that accepts a
request from a shader in the form of a list of requested geometric
values, and returns the relevant information. There is a performance
penalty for this process, but it only occurs once per shading point.
I consider that the extra overhead to parse the request list is
compensated by the time saved by not calculating unnecessary values.
o Colors may be specified in a variety of formats, including spectral
distributions.
o Meta-objects (accelerators, CSG trees, abstract structures, etc.) are
considered "first-class".
-------------------------------------------------------------------------------
Comments on the Glazing Trick, by Eric Haines (erich@acm.org)
Hans Kilian (iqkili@cbs.dk) writes:
>In vol. 5 issue 1, in 'The Glazing Trick' Haakan Andersson says that pumping
>up the specular exponent makes the shiny spot smaller and not sharper. If
>I'm not mistaken, this is because he uses point light sources and not area
>light sources. If he uses area lights he will get correct results. I'm sure
>that Haakan knows this, but I got the impression that he felt that this was
>Phong's fault, and it really isn't...
You're right in that part of the problem is that he's using point lights.
However, Phong's highlights are basically a way to simulate surface shininess.
After all, a true point light would never reflect (well, except at one single
point) in a surface if the surface was perfectly reflective, with no "spread"
in the reflection. Essentially, Phong's trick is to spread out the reflected
light in a cosine to a power distribution, and note the value of this
distribution from the eye's view angle - a wider distribution gives a duller
looking surface. When you have area lights, you can't use this easily: you
either have to reflect the lights directly (in which case the lights are seen
in the reflection as if the surface were perfectly reflective) or you have to
sample the area a sufficient amount to get the phong highlights and sum and
scale these.
In theory, what works for lights should work for light reflectors in the
environment. In other words, you could sample the environment (i.e. ray
trace) from the view of the surface and use Phong highlighting on these sample
rays and so get a shiny or dull looking surface. If you're smart, you'll
simply use the Phong distribution itself to determine where the rays are shot,
shooting more rays in the higher contribution areas. This has been done, and
looks pretty good with enough reflection samples.
The problem with Phong's trick is that it is not energy conserving at all: a
low cosine power gives a lot more total energy (light) reflected from a
surface than a high cosine power. Phong kept peak intensity constant, which
is important for making it easy for a user to adjust the specular highlight's
look, but is lousy from any physically based standpoint.
This lack of energy conservation hit home when I tried doing texture mapping of
the cosine exponent. Say you texture this exponent and it varies from 0 to 10.
The weird effect is that the surface brightness is brightest around 1 (or less,
if you allow < 1 exponents) and drops off as you go to 10. So at 0 you get
no specular highlight, at 1 the overall brightness is at its height, then it
drops off as you go to 10.
>The thresholding trick is a neat trick, that I didn't know about, and it'll
>save a lot of rendering time when you *do* use point light sources and still
>want a large shiny spot on your objects.
Yes - essentially, you're saying you want the surface to look perfectly
reflective (i.e. mirrorlike, not like brushed aluminum) and for the light to
have a finite radius. The only problem I see is that the thresholding trick
does not take into account the distance the object is from the light, so that
the light will always be reflected as the same relative size no matter what
the distance the light is from the object.
======== Net cullings follow ==================================================
Graphics Gems IV Announcement, by Paul Heckbert (ph@cs.cmu.edu)
We've decided to bring out Gems IV in 1994, not 1993, to keep the quality of
the series high. The deadline for contributions is in the late Spring of
1993. Write to Academic Press (not me) for more detailed information about
how to contribute:
Graphics Gems Editor
Academic Press
955 Massachusetts Ave
Cambridge MA 02139
or email jswetland@igc.org .
And if you've got ideas for contributions and you'd like to discuss their
appropriateness with me, email me at ph@cs.cmu.edu . Suggestions and
criticisms of the previous volumes are also welcome.
-------------------------------------------------------------------------------
Announcing the ACM SIGGRAPH Online Bibliography Project, by Stephen Spencer
(biblio@siggraph.org)
A new resource for researchers is now available to the computer graphics
community. Over 15,000 unique bibliographic references from the computer
graphics field have been compiled into a single database for use by students,
researchers, and the computer community in general.
The project started with the DEC online computer graphics bibliography, which
covered the years 1976 through 1986, and added the contributed bibliographic
databases of a number of individuals, expanding the years covered as well as
the sources of information.
This database includes references from conferences and workshops worldwide and
from a variety of publications, from magazines and journals to books dating
back as far as the late 19th century. The majority of the major journals and
conference proceedings between the mid-1970's and 1992 are listed here.
The database is formatted in the BibTeX bibliography entry format, an
easy-to-read and understand ASCII format. It is organized into files by year
(except for the entries prior to 1975, which are collected into one file by
themselves).
A set of tools for manipulating and searching the bibliography database is
also available for downloading.
The database is available for anonymous FTP from "siggraph.org"
"(128.248.245.250)" in the "publications/bibliography" directory. Use
"anonymous" as the username and your electronic mail address as the password
to gain entry to the FTP area on this machine. Please download and examine
the file "READ_ME" contained in the "publications/bibliography" directory for
more specific information concerning the database.
This project is an ongoing concern: We plan to expand the bibliography, both
keeping it up-to-date as well as filling in missing pieces, large or small,
and polishing and refining the format of the existing database. In addition,
plans to provide interactive online searching of the database are underway.
Alternative distribution channels are also being considered.
Volunteers are always welcome. Contact "biblio@siggraph.org" for more
information on what needs to be done.
Questions, corrections, suggestions, and contributions of material to the
database can be directed to: "biblio@siggraph.org" on the Internet.
-------------------------------------------------------------------------------
A Brief History of Blobby Modeling, by Paul Heckbert (ph@cs.cmu.edu)
[I deleted the reference - if you want these, check the online SIGGRAPH
bibliography (see elsewhere in this issue for details). - EAH]
People have known for a long time that if you have two implicit surfaces
f(x,y,z)=0 and g(x,y,z)=0 that are fairly continuous, with a common sign
convention (f and g positive on the inside, negative on the outside, say) then
the implicit surface defined by f+g=0 is a blend of the shapes. See [Ricci
1983] for a variant of this.
The van der Waals surfaces of molecules (roughly speaking, iso-potentials of
the electron density) are described in Chemistry and Physics books and [Max
1983]. To create animation of DNA for Carl Sagan's COSMOS TV Series, Jim
Blinn proposed approximating each atom by a Gaussian potential, and using
superposition of these potentials to define a surface. He ray traced these
[Blinn 1982], and called them "blobby models".
Shortly thereafter, people at Osaka University and at Toyo Links in Japan
began using blobby models also. They called theirs "metaballs" (or, when
misspelled, "meatballs"). Yoichiro Kawaguchi became a big user of their
software and their Links parallel processor machine to create his "Growth"
animations which have appeared in the SIGGRAPH film show over the years. The
graduate students implementing the metaball software under Koichi Omura at
Osaka used a piecewise quadratic approximation to the Gaussian, however, for
faster ray-surface intersection testing (no need for iterative root finders;
you just solve a quadratic). I don't know of any papers by the Japanese on
their blobby modeling work, which is too bad, because they have probably
pushed the technique further than anyone.
Bloomenthal has discussed techniques for modeling organic forms (trees,
leaves, arms) using blobby techniques [Bloomenthal 1991] (though he prefers
the term "implicit modeling") and for polygonizing these using adaptive,
surface-tracking octrees [Bloomenthal 1988]. The latter algorithm is not
limited to blobby models, but works for any implicit model, not just blobs.
Polygonization allows fast z-buffer renderers to be used instead of ray
tracers, for interactive previewing of shapes. A less general variant of this
algorithm was described in the "marching cubes" paper by [Lorensen 87] and
some bugs in this paper have been discussed in the scientific visualization
community in the years since. In the sci-vis community, people call them
"iso-surfaces" not "implicit surfaces".
Meanwhile, in Canada and New Zealand, the Wyvill brothers, and grad students,
were doing investigating many of the same ideas: approximations of Gaussians,
animation, and other ideas. See their papers listed below. Rather than
"blobbies" or "metaballs", they called their creations "soft objects". But
it's really the same idea.
Bloomenthal and Wyvill collected many good papers on blobby and implicit
modeling for a recent SIGGRAPH tutorial (1991?).
-------------------------------------------------------------------------------
Cool Raytracing Ideas, Karen Paik (paik@cgl.citri.edu.au)
Karen comments on:
> In general removing "common sense" restraints from rendering equations
>gives you flexibility to do a lot of ad hoc effects.
At Compugraphics 92, M. Beigbeder and V. Bourgin presented a paper titled
"New Perspectives for Image Synthesis" in which they used artistic perspective
projections, instead of the usual one. They had a "fishbone" perspective and a
circular perspective. These perspectives broke a lot of the fundamental
assumptions. Straight lines weren't always straight after they were projected
and light didn't always travel in a straight line.
-------------------------------------------------------------------------------
Optical Effects and Accuracy, by Sam Uselton (uselton@wk207.nas.nasa.gov)
In article <1992Nov12.133317.5833@genes.icgeb.trieste.it> oberto@genes.icgeb.trieste.it (Jacques Oberto) writes:
>I am trying to reproduce one of Newton's experiments with POV.
>Would a simulated white light beam hitting a glass prism with the
>right angle be scattered into a rainbow spectrum ?
>Are POV and other ray-tracers optically accurate in that respect ?
>Has anybody tested the properties of 'raytraced' light other than
>reflection and refraction ?
I don't know POV................BUT
If it is in the tradition of the standard ray tracers, it starts at the eye,
shooting rays through pixels into a scene. Essentially this is tracing ray
paths in reverse. Generally speaking, ray paths are reversible, so this is
fine. There are, however, difficulties. When a ray hits an object, in
addition to reflected and refracted rays, rays to the light sources must be
generated to determine shadows, intensity of illumination, etc. If one of
these light source rays hits a refractive object, it may no longer be headed
for the light source once the refraction is done.
What one would LIKE to do is shoot the light source ray in a direction (there
may be several correct choices) which will result in a ray pointed at the
light AFTER the refraction. Guessing what direction(s) this might be is HARD.
One solution is to shoot lots of illumination rays in various directions
(especially from a surface that is not perfectly specular, use the BRDF as the
distribution being randomly sampled => distribution ("distributed") ray
tracing).
Another solution is to do the ray tracing from the light, but then most of the
rays won't get to the screen so the effort is wasted. There are various
schemes in the literature for getting around the difficulties, but my guess is
that they are not in most public domain code.
Another difficulty probably ignored in most PD code, is that in order to break
out the spectrum, the refraction angle must be calculated on a wavelength
dependent basis, generally with a single ray turning into several rays to
properly sample the spectrum.
We (Redner, Lee & Uselton ++)have done an image of the experiment I believe
you are describing. It was accepted into the SIGGRAPH slide set and
distributed last summer at the conference. It does involve a forward ray
tracing phase, and some stuff to remember these results in a way that can be
used in a traditional backward ray tracer. Harder than it looks.
[Also see Mitchell & Hanrahan's article in SIGGRAPH '92 about this topic. -EAH]
-------------------------------------------------------------------------------
Map Projections Reference Book, by Mike Goss (goss@CS.ColoState.EDU)
One of the best reference books for map projections is
Map Projections --- A Working Manual
by John P. Snyder
USGS Professional Paper 1395
US Gov't Printing Office, 1987 (383 pages)
It's available directly from USGS, and was $20 a few years ago. In the USA,
call 1-800-USA-MAPS (1-800-872-6277) for ordering info. Snyder covers all the
projections used by USGS, and a few others. For each one he gives a bit of
history, some explanatory material, detailed formulas, and examples.
There is also some source code available for anonymous FTP at
spectrum.xerox.com, under directory /pub/map/source (I haven't used it, but
I've seen it there).
-------------------------------------------------------------------------------
A Brief Review of Playmation, by Chris Williams
(chrisw@fciad2.bsd.uchicago.edu)
Playmation is a good quality ray-tracer, and one of the few that renders
patches (Catmull-rom). The base package only renders at 256 colors, but an
they offer a 24-bit DOS-based renderer for ~$100.00. It's a very nice
renderer, and renders with an 8-bit alpha channel. The major nice points of
the package are its modeler and animation capabilities. I may review this
entire package in the future.
BTW, Will Vinton has had nothing to do with the software other than lending
it his name. The program has been in development on the Amiga for several
years as Animation Apprentice, then as Animation Journeyman. It's still
available on the Amiga, and Mac and SGI versions are supposed to be in the
works.
[and in a later post:]
If you are familiar with patch-based modeling, it is a fairly powerful
modeling interface. It (IMHO) gives Alias a run for the money at a tiny
fraction of the cost. I consider it the "poor person's Alias."
-------------------------------------------------------------------------------
PV3D Quick Review, by David Anjo
I promised one individual on the net's that once I had received my registered
copy of PV3D I would post a general, brief review of what I have found.
First and foremost the most current version of PV3D is v.0.50. I did download
it from The Graphics Alternative BBS (510 524-2165/2780) before I received my
copy in the mail. I do not have ftp status from the mail site I use, so I
cannot suggest a location for those so inclined. I would suspect that You Can
Call Me Ray BBS (708 358-8721/5611) will have a copy available of v.0.50. I
mention this because YCCMR is a free access board, while TGA is subscriber
based. I highly recommend *both* systems for anyone interested in PC based
raytracing.
The features included within the shareware version are identical to those in
the registered version, save the following:
- you can save a created scene file for future manipulation.
- the registered version includes two additional utilities, of which one I
have found to be most handy (a screen capture to texture map facility - very
nice). *Source* code is included for both.
- larger screen previews of the online texture maps included with the product.
The preview screens certainly help in picking an appropriate texture for that
object, especially when you forget what the 'ell GRNT9 is supposed to look
like =]. As per the point above there are simple instructions on how to
incorporate your "designed" textures to this online library.
- a host of sample "triangled" DXF files - something I certainly appreciate
given the sweat I've had creating them. Their integration is seamless, BTW.
For those who do not know what PV3D is, here's a brief review.
PV3D is a wireframe modeler for those PC based raytracers using Persistence of
Vision. It is something more oriented towards the novice PoV user and for
even the advanced, experienced souls, who just want to get on with creating
(hopefully) interesting raytraced artworks. Beyond providing the basic
primitives (sphere, quad sphere, cylinders, cones, cubes, pyramids, positive
and negative blobs, planes and torii) PV3D can also generate spline based
objects. You can incorporate "triangled" DXF files. Multiple lights can be
positioned, as well as the look_at and camera locations, very easily. You can
preview the textures used and the colours applied (corresponding surface
"highlights") to individual objects. It is reasonably priced (250 Frebch
Francs) and although still in a beta stage, extremely promising. It has cut
down my "code" time dramatically, increasing my creative time ten fold. I'm a
computer based artist and the goal is to produce art - PV3D is a major benefit
in that pursuit.
Back to the latest version...
The biggest change in v.0.50 as far as I'm concerned is the new View 3D
option. This will give you a world view of your scene from the perspective of
the camera location. This is a major advantage, especially when you get up
close to the maximum of 150 objects and you are, quite simply, lost. I know,
I certainly have been in the past =]. Very nice addition.
The documentation is still hurting from a lack of a suitable French to English
translation, but I intend to offer my assistance in that regard. Mind you if
the author's English is bad, my French is a lot worse. I will be seeking a
good translation program in this effort - any suggestions for a bi-directional
program would be much appreciated.
[unfortunately, I didn't receive the second part of the review at our site,
so this is all there is! - EAH]
-------------------------------------------------------------------------------
Bounding Volumes (Sphere vs. Box), by Tom Wilson (wilson@cs.ucf.edu)
[For those learning about the value of bounding volumes, here's a summary.
- EAH]
djb@geovision.gvc.com (Darren Burns) wrote:
>I had been under the impression that it was quicker to intersect
>a line with a sphere than with a box. I just did a timing test.
>Basically I had a bunch of spheres or boxes sitting there and I
>ray-traced the scene, once using spheres and once using boxes.
>I found that the boxes were faster (not a lot, 11 seconds for
>spheres vs 9 for boxes). The volumes were about the same for
>both types of objects; actually the spheres were a little smaller.
You must be careful when drawing your conclusion. I've found 3D boxes faster
too, but it is very dependent upon what's inside as to whether or not it will
be. Depending on how optimized your code is, the sphere BV may be faster to
intersect with a ray, but the comparison doesn't end there. When a ray hits
an object inside the BV, both the sphere and the box are a waste of time.
When the object inside the BV is missed, it is up to the BV to cull as many
rays as possible. You want to perform the ray-object intersection code as few
times as possible when it will miss the object (you obviously must execute the
code when there is a hit).
Also you must take into account the relative execution times of (1) ray-sphere
(as BV) int., (2) ray-box int., and (3) ray-object int. If (3) is much
greater than both (1) and (2), you may get a better answer from your test.
Suppose you have 2 BVs: BV #1 is the slower of the two, but culls more
misses, BV #2 is the faster of the two, but culls fewer misses. Which is
better? That depends on how many rays are actually involved in the
comparison, but let's be sloppy and just say: if the time saved by using the
faster BV #2 is lost by executing the slower ray-object routine more times, BV
#1 may actually be the better choice. Too many tests involve spheres or boxes
around simple triangles.
Basically, you are introducing yourself to an old, but difficult-to-fully-
-solve problem. Much work has been done on the choice of BVs. Couple that
with a construction of a hierarchy of BVs and you really have a mess. Find
some of the bibliographies at ftp sites to see the work that has already been
done (also you might find my collection of ray tracing abstracts which might
give you a clue about what is discussed before you actively seek the papers --
send me e-mail for more details if you'd like, I don't want to bother at the
moment). The text _An Introduction to Ray Tracing_ has a sufficient
explanation of the background material.
The only strong conclusion I can make is that boxes work best for the scene(s)
you tested. They may be a good choice in general, but that's a dangerous
statement.
I hope I made some helpful comments. Others are appreciated.
[Me, I've given up bounding volume spheres and even ellipsoids: boxes seem to
almost always have tighter bounds and having only one bounding volume
throughout your program saves a lot of messing around in the code. - EAH]
-------------------------------------------------------------------------------
Raytracing Swept Objects, by Mark Podlipec (podlipec@dgxyris.webo.dg.com)
In article , bagchi@eecs.umich.edu (Ranjan Drzzzzt! Bagchi) writes:
|>
|> Consider this object: I take a curve between two endpoints, and rotate
|> it 360 degrees about the y axis. How would I go about ray-tracing the solid
|> I've just swept out.
|>
|> I've given this some thought.. and I'm fairly sure that in
|> the general case, this is quite difficult. But are there any classes
|> of curves which sweep out solids which are easy to get
|> ray-intersections and surface normals?
I've implemented an object for rayshade a couple of years ago which is pretty
similar to what you've described(I call it cubicspin). You take any curve
described by a 3rd degree polynomial and rotate it about an arbitrary axis.
End points are also specified.
A third degree polynomial rotated like that becomes a 6th degree polynomial
and then you can substitute in the ray equations to find the point of
intersection. Throw in some checking for the end points and there ya go.
This is the brute force method.
I use natural cubic splines to specify the curve.
Now if you started with a 4th degree curve, you would have to solve 8th degree
equations, etc. But for the most uses, the extra degrees don't buy you much.
[My favorite article on this topic is still:
%A Jarke J. van Wijk
%T Ray Tracing Objects Defined by Sweeping Planar Cubic Splines
%J ACM Trans. on Graphics
%V 3
%N 3
%D July 1984
%P 223-37
- EAH]
-------------------------------------------------------------------------------
Ray Transformation, by Kendall Bennett (rcskb@minyos.xx.rmit.oz.au)
[an article for people trying to implement the viewing transform. - EAH]
>belme@waterloo.hp.com (Frank Belme) writes:
>
>I was wondering what a good way is to calculate the direction of each ray
>for ray tracing a scene given an eyepoint, eye direction, and field of view
>angle. Any help would be appreciated. Thanks.
There is actually a better way of doing this, that can take into account
aspect ratio and fields of view prior to actually computing the ray direction
(the speedup in this routine are generally not that noticeable, but it is nice
to have something elegant!).
The first step is to compute two vectors, one in the direction of increasing x
coordinates for the image, and one for increasing y coords, that are scaled to
be the length of a pixel in each respective direction (aspect ratio calcs go
in here). Then compute a vector that points towards the upper left corner of
the screen (I will give pseudo code later).
When you have this information, you can quickly create any ray to fire by
simply adding appropriately scaled versions of the x and y direction vectors
to the vector pointing to the first pixel (of course you want to normalise the
final vector :-):
PreProcessing stage:
xdir = (2 * lookDistance * tan(hfov / 2)) / xres
ydir = (2 * lookDistance * tan(vfov / 2)) / yres
ydir *= aspect // Adjust y pixel size given aspect ratio
LLdir = camera.dir - (xdir * xres)/2 - (ydir * yres)/2
Computing the ray to fire:
dir = LLdir + xdir * x + ydir * y
dir = dir normalised
and you are done - not rotations, just simply vector additions and scales
(this is almost directly taken from my C++ ray tracer).
-------------------------------------------------------------------------------
END OF RTNEWS