The

Ray Tracing

News

Volume 2, Number 1

"Light Makes Right"

February 1988

Feature Articles

1 Problems with the Octree Subdivision

Method for Ray Tracing Eric Haines
3 Editorial: Optical Junk and

Rendering Times Andrew Glassner
4 Notes Regarding Ray Tracing

withOctrees Olin Lathrop
4 Minimal Ray Tracing Paul Heckbert
6 Subspaces and Simulated

Annealing Jim Arvo

8 Top 10 Hit Parade of
Computer Graphics Books __ Eric Haines

9 A Rendering Trick & Puzzle __ Eric Haines
10 Efficiency Tricks Eric Haines

11 Efficient Ray Tracing in
Subdivided Space_____ Andrew Glassner

All contents are copyright © 1988 by the individual authors
and Ray Tracing News. Letters to the editor are welcome, and
will be considered for publication unless otherwise requested.
This issue was sponsored by the NSF-funded Walkthrough
Project at UNC. Please direct all correspondence and submis-
sions to the editor:

Andrew Glassner

Department of Computer Science
University of North Carolina

Chapel Hill, NC 27599-3175 USA
(919) 962 - 1803 / glassner@cs.unc.edu

Problems with the Octree
Subdivision Method for
Ray Tracing

by Eric Haines

I think that octree efficiency techniques can
be terrible for generalized ray tracing. The
technique is useful for a large percentage of
cases, but there exist pathological environ-
ments which can cause serious problems. The
root of these problems is that there is no guar-
antee that a leaf node in an octree will have a
reasonably low number of primitives to test.

There are two limits imposed by the pro-
grammer on how an octree is formed for a given
environment. One limit is the number of primi-
tives in a octree leaf node (aleafnode is an octree
voxel which contains a list of primitives which
are to be tested for ray intersection. Parent
nodes are voxels that are subdivided into
subvoxels). The other limit is the number of
levels to which the octree subdivision can be
taken. A simple method of generating the octree
structure is then to check how many objects are
inaleafnode. Ifthis exceeds thelimit, the octree
node is subdivided, new lists of primitives for
the eight subvoxels are created, and each
subvoxel is tested in the same manner, recur-
sively. When a leaf node is at the maximum
subdivision level it is not subdivided, no matter
how many objects are contained within.

Problems with the octree begin to arise when

(continued on Page 2)



The Ray Tracing News

Problems with Octrees
(continued from Page 1)

primitives do not fill space with the same den-
sity. For example, imagine you have a football
stadium made of, say, 5000 primitives. Sitting
on a goal line is a shiny polygonalized teapot of
5000 quadrilaterals (note that the teapot is
teapot sized compared to the stadium). You fill
the screen with the teapot for a ray trace, hoping
to get some nice reflections of the stadium on its
surface.

If you use an octree for this scene, you'll run
into an interesting problem. The teapot is, say,
afoot long. The stadium is 200 yards long. So,
the teapot is going to be only 1/600th the size of
the stadium. Each octree subdivision creates 8
subvoxels which are each half the length of the
parent voxel. You could well subdivide down to
9 levels (with that 9th level voxel having a length
of 1/512th of the stadium length: about 14
inches) of octrees and have the whole teapot
inside one octree voxel, still undivided. At best
you will have subdivided the teapot only once. If
you stopped at this 9th level of subdivision, your
ray trace would take forever. Why? Because
whenever a ray would enter the octree voxel
containing the teapot (which most of the rays
fromyour eye would do, along with the reflection
and shadow rays), the voxel would contain a list
of the 5000 teapot polygons (plus the stadium’s
playing field polygon). Each of these polygons
would have to be tested against the ray, since
there is no additional efficiency structure to
help you out. In this case the octree has been a
total failure.

Now, you may be in a position where you
know that your environments will be well be-
haved: you're ray tracing some specific object
and the surrounding environment is limited in
size. However, this answer certainly does not
help the designer who is attempting to create a
system which can respond to any user’s model-
ing requests. Further subdivision beyond level
nine down to (say) level eighteen may solve the
problem in this case. But I can always come up
with a worse pathological case. A realistic
example is an animation of a satellite orbiting
the earth: the sphere which represents the
earth would create a huge octree node, and the
satellite would easily fall within one octree cubie
(I compute that you'd have to go down about 23

levels for a five foot long satellite to begin subdi-
vision). Or a user simply wants to have a
realistic sun, and places a spherical light source
93 million miles away from the scene being
rendered. Ridiculous? Well, many times I find
that I will place positional light sources quite
some distance away from a scene, since I don't
really care how far away the light is, but am
interested in only the direction the light is
coming from. If a primitive is associated with
that light source, the octree suddenly gets huge.
My final example is of a teapot in a room. Here
we find that the first four levels of subdivision
are used just to get us to the level of the teapot.
These extra subdivisions cost us extra time and
memory for the octree, yet provide very little
benefit. Many empty octree voxels may have to
be traversed when there are large amounts of
space between objects.

Solutions? Mine is simply to avoid the
octree altogether and use Goldsmith’s auto-
matic bounding volume generation algorithm
(IEEE CG&A, May 1987). However, I hate to give
up all that power of the octree (i.e. if any
primitive in an octree voxel is intersected, then
ray trace testing is done, versus having to test
the whole environment’s hierarchy against the
ray). So, my question: has anyone found a good
way around this problem? One method might
be to do octree subdivision down to a certain
level, then consider all leaf voxels that have
more than the specified number of primitives in
their lists as “problem voxels”. For this list of
primitives we perform Goldsmith’s algorithm to
get a nice bounding volume hierarchy. The idea
is to use the octree for the total environment so
that the quick cutoff feature of the octree can be
used. Using bounding volume hierarchy locally
gets rid of the pathological cases for the octree.

“Problem voxels” could probably best be
identified by checking the longest list size
among the subvoxels with the parent voxel's
original list size. If the subvoxel list length is not
noticeably smaller (say at most 60% of the
parent list length), then the octree subdivision is
deemed unnecessary and is not done. This test
would catch the case where a subdivision
operation does not gain very much for overall
testing.

The above procedures would help cure the
pathological cases discussed, though at a loss of
elegance. Has anyone else considered this
problem and found some alternate solution? @

Volume 2, Number 1



The Ray Tracing News

Editorial: Optical Junk and
Rendering Times
by Andrew Glassner

As I walked past a stationary store last
December, I noticed the Christmas tree orna-
ments. Amidst the blinking lights and spinning
wooden Santas and trains were reflective ball
ornaments — the shiny spheres so well known to
every ray tracer!

I wonder how many of us have actually gone
out and bought Christmas tree balls to stare at
and study. I remember when I was first learning
about colored lights on colored surfaces. I
found a post-Christmas sale of six shiny
spheres of different colors, and placed them on
my desk. Ilearned a lot about light, color, and
reflection by observing those shiny globes.

Reflections are neat, and they certainly
make reflective surfaces look reflective. Butjust
because we can do reflections doesn’t mean we
have to. In his book The Visual Display of
Quantitative Information (Graphics Press),
Edward Tufte refers to needless ornament in a
chart as “chart junk”. This sort of thing can
arise in many ways, but I find I'm most suscep-
tible to including chart junk when I'm working
with a computer, say in a program like
MacDraw. It's just so easy to pile in layer after
layer of texture and ornament that it becomes
almost a game, to the point where I sometimes
forget that I'm making a chart to convey infor-
mation, not dazzle the eye.

I think in a similar vein we're susceptible to
including “optical junk” in our ray-traced
images, when we throw in extraneous reflective
and refractive objects just because we can.
Looking around our graphics lab right now, I see
almost no transparent or reflective objects,
except for the faces of CRT screens, the windows
in the doors, and the eyeglasses on my head.
Well, the coffee mug next tome is glazed and has
some very low-level reflection, but it's not very
significant. Most man-made interior environ-
ments reflect diffusely, I believe. It's primarily
shadows and textures that make a scene look
good, not lots of bouncing light.

Of course when we do have a reflective or
refractive surface then that little bit of realism
might help an image tremendously, but such
objects are not as prevalent as most of our

February 1988 3

recent ray-traced images would imply. I'm as
guilty of optical junk as anyone, but I'm trying
to learn restraint.

One of my New Year's resolutions is to not
use comparitive running times to evaluate
competitive ray tracing algorithms. At the
Siggraph 88 ray tracer’s roundtable there was
a discussion of how to actually compare ray
tracing algorithms, and we never really got any-
where.

Ithink one of the best steps in this direction
is Eric Haines’s package of standard databases.
They give us something to grab hold of, and
they’re also attractive images that are a pleas-
ure to render. But it’s not the running time that
should be observed when rendering these data-
bases, it's the relevant statistics that describe
the work done by the algorithm.

For example, suppose I have a brute-force
ray tracer, which tests every ray against every
object. The program is small and the innerloops
are fast. Of course, they repeat a zillion times,
but the program is short. On the other hand,
consider a sophisticated ray tracing system,
which supports procedural objects and tex-
tures, distributes the rays every which way, and
manages the database in an object-oriented
manner (which we all know can means lots of
little procedure calls, for everything from dot
product to intersection). For some databases, it
is possible that the brute-force program will
actually run faster than the sophisticated sys-
tem, and the images might even be of compa-
rable quality!

So unless we can compare two algorithms
side-by-side in completely equivalent environ-
ments (by this I mean the program environ-
ment; everything the same but one or two pro-
cedures), then clock times will be meaningless
at best and misleading at worst. It is my belief
that such side-by-side comparisons are so hard
to build that it’s just not worth the effort. How
do you put pure bounding volumes and pure
space subdivision side-by-side?

One suggestion from the roundtable was to
build bare-bones renderers that shot one eye
ray per pixel, computed only gray scale, and so
forth. Perhaps this could work, but the me-
chanics are hard. If I'm working on algorithm A,
I'm likely to be much closer to the efficiency

(continued on Page 4)



' The Ray Tracing News

Editorial

(continued from Page 4)

tradeoffs and coding strategies for A than for
algorithm B. Even if I try to give B a good
implementation, my code for A is likely to be
better. And if I use someone else’s code for B,
then I think any meaningful comparisons are
immediately lost.

So since we don't really know how to com-
pare ray tracing algorithms at this point, let’s
not mislead ourselves by doing it anyway. Leave
clock times out of it. Report the relevant statis-
tics that describe the performance of the pro-
gram in raw terms: number of ray/object inter-
sections, number of rays, some accounting for
any pre-processing work, number of ray/bound
intersections for bounding volumes, number of
cell traversals for space subdivision, and so on.
Discuss the results and mention where the big
effects are visible, and how big they seem to be,
and let the reader agree or disagree that an
important cost has been reduced. But don’t
then produce the elapsed running time for
making the picture on your system as a final
justification; we want to learn about algorithms,
not who's the best hacker! @

Notes Regarding Ray
Tracing with Octrees
by Olin Lathrop

1) I don’t use Andrew’s hashing scheme to
find the next voxel when tracing rays in adap-
tively subdivided space (IEEE CG&A, October
1984). Instead, I transform the ray so that my
octree always lives in the (0,0,0) to (1,1,1) cube.
To find the voxel containing any one point, I first
convert the coordinates to 28 bit integers. The
octree now sits in the O to 228 cube. Picking off
the most significant address bit for each coordi-
nate yields a 3 bit number, which is used to
select one of 8 voxels at the top level. ThenI pick
off the next address bit down to select the next
level of subordinate voxel, and so on with in-
creasingly less significant bits, until I hit a leaf
node. This process is log(n) in theory, and very
quick in practice. Finding a leaf voxel for a given
integer coordinate consumes less than 10% of
the total rendering time for all of my images so
far. Istore direct pointers to subordinate voxels
directly in the parent voxel data block. In fact,

(continued on Page 5)

Minimal Ray Tracing

by Paul Heckbert

A complete ray tracer in the C programming language!

~

/rtypedef struct {double x,y,z}vec;vec U,black,amb={.02,.02,.02};struct sphere(
vec cen,color;double rad,kd,ks,kt,kl,ir}*s, *best,sph([]={0.,6.,.5,1.,1.,1.,.9,
.0s,.2,.85,0.,1.7,-1.,8.,-.5,1.,.5,.2,1.,.7,.3,0.,.05,1.2,1.,8.,-.5,.1,.8,.8,
1.,.3,.7,0.,0.,1.2,3.,-6.,15.,1.,.8,1.,7.,0.,0.,0.,.6,1.5,-3.,-3.,12.,.8,1.,
1.,5.,0.,0.,0.,.5,1.5,};yx;double u,b,tmin,sqrt(),tan();double vdot (A,B)vec A
,B; {return A.x*B.x+A.y*B.y+A.z*B.z;}vec vcomb(a,A,B)double a;vec A,B;{B.xt+=a%*
A.x;B.y+=a*A.y;B.z+=a*A.z;return B;}vec vunit (A)vec A;{return vcomb(l./sqrt (
vdot (A,A)),A,black) ; }struct sphere*intersect (P,D)vec P,D; {best=0;tmin=1e30;s=
sph+5;while (s—>sph) b=vdot (D, U=vcomb (-1.,P,s->cen) ) ,u=b*b-vdot (U, U) +s->rad*s
->rad, u=u>0?sqgrt (u) : le31,u=b-u>le-7?b-u:b+u, tmin=u>=le-7&&u<tmin?best=s, u:
tmin; return best; }vec trace(level,P,D)vec P,D;{double d,eta,e;vec N,color;
struct sphere*s,*1;if(!level—)return black;if (s=intersect (P,D)) ;else return
amb; color=amb;eta=s->ir;d= -vdot (D,N=vunit (vcomb (-1.,P=vcomb (tmin,D,P),s->cen
)} ) ;if (d<0)N=vcomb (-1.,N,black),eta=1/eta,d= -d;l=sph+5;while(1—>sph)if ((e=1
->kl*vdot (N, U=vunit (vcomb (-1.,P,1l->cen))))>0&&intersect (P,U)==1) color=vcomb (e
,l->color,color);U=s—>color;color.x*=U.x;color.y*=U.y;color.z*=U.z;e=1—eta*
eta* (1-d*d) ; return vcomb (s->kt,e>0?trace(level,P,vcomb (eta,D,vcomb (eta*d-sqrt
(e),N,black))) :black, vcomb (s->ks, trace (level,P,vcomb (2*d,N,D) ), vcomb (s->kd,
color, vcomb (s->kl1,U,black)))) ;}main () {printf (*%d %d\n”,32,32) ;while (yx<32*32)
U.x=yx%32-32/2,U.2=32/2-yx++/32,U.y=32/2/tan(25/114.5915590261) ,U=vcomb (255.,
\ktrace(3,black,vunit(U)),black),printf(“%.Of %$.0f %.0f\n”,U);}/*pixar!iph*/ ‘)

4 Volume 2, Number 1



The Ray Tracing News

Octree Notes
(continued from Page 4)

this is the only way I have of finding all but the
top voxel.

About the 28 bit integers: At first glance, it
would appear some precision is being thrown
away by converting to 28 bit integers, consider
that the original floating-point number occu-
pies 32 bits. Actually, the 32 -bit floating point
numbers only have 24 bits of significance any-
way. 28 bits is a comfortable precision that
introduces very little additional error, and still
leaves some overrange, since it is stored and
manipulated as a 32 bit integer.

2) Choosing subdivision criteria: First, the
biggest win is to subdivide on the fly. Never
subdivide anything until you find there is a
demand for it. Here are my current subdivision
criteria in order of precedence (I overrides II) :

I) Do not subdivide if the generation num-
ber of this node is at the subdivision generation
limit. I think everyone does this.

II) Do not subdivide if the voxel is empty.

1) Subdivide if the voxel contains more
than one object.

IV) Do not subdivide if less than N rays
passed through this voxel, but did not hit
anything. Currently, I set N to 4.

V) Subdivide if M*K < N. Where M is the
number of rays that passed through this voxel
that did hit something, and Kis a parameteryou
choose. Currently, I set K to 2, but I suspect it
should be higher. This step seeks to avoid
subdividing a voxel that may be large, but has a
good history of producing real intersections
anyway. Keep inmind that for every ray that did
hit something, there are probably light source
rays that did not hit anything. (the shader
avoids launching light rays if the surface is
facing away from the light source). This can
distort the statistics, and make a voxel appear
less “tight” than it really is, hence the need for
larger values of K.

VI) Subdivide.

Again, the most important point is lazy
evaluation of the octree. The above rules are
only applied when a ray passes through a leaf
node voxel. Before any rays are cast, my octree
is exactly one leaf node containing all the ob-
jects.

3) First solution to teapot in stadium: This
really cries out for nested objects. Jim Arvo,

February 1988

Dave Kirk, and I submitted a paper last year
called The Ray Tracing Kemnel which discussed
applying object oriented programming to the
design of a ray tracer. Jim has an article in this
issue that goes into more detail, so I will make
this real quick. Basically, objects are only
defined implicitly by the results of various stan-
dard operations they must be able to perform,
like “intersect yourself with this ray”. The caller
has no information how this is done. An object
can therefore be an “aggregate” object which
really returns the result of intersecting the ray
with all its subordinate objects. This allows for
easily and elegantly mixing storage techniques
(octrees, linear space, 5D structures, etc. ) inthe
same scene. For more details, see Jim Arvo’s
article in this issue.

4) Second solution to teapot in stadium: I
didn’t understand why an octree wouldn't work
well here anyway. Suppose the teapot is com-
pletely enclosed in a level 8 voxel. That would
only “waste” 8x8=64 voxels in getting down to
the space you would have chosen for just the
teapot alone. Reflectionrays actually hitting the
rest of the stadium would be very sparse, so go
ahead and crank up the max subdivision limit.

5) Efficiency issues: The bottleneck in my
current algorithm is in finding a coordinate in
the next voxel along the ray. This is currently
done with rather brute force floating point ray/
plane intersections, and takes about 30% to
50% of the time. There are some integer tech-
niques that seem promising, but haven't been
tried yet. Eventually it seems that all the coor-
dinate manipulations for walking the octree can
be done with integers. This not only works well
with point #1 (above), but also would lend itself
to a hardware solution more easily. @




The Ray Tracing News

Subspaces and
Simulated Annealing
by Jim Arvo

This article was originally motivated by the
“reflective teapot in a stadium” example devised
by Eric Haines as a challenging scene to ray
trace. I'll begin by describing how we’ve encoun-
tered and dealt with similar situations. I'll close
with some speculation on how a technique
called simulated annealing might be brought to
bear on problems like this in the future. Most of
this work is a result of joint development and
countless discussions with Dave Kirk, Olin
Lathrop, and John Francis.

One way that we've dealt with situations
similar to Eric’s teapot example is to use a
combination of spatial subdivision and bound-
ing volume techniques. For instance, we com-
monly mix two or three of the following tech-
niques into a “meta” hierarchy for ray tracing a
single environment:

1) Bounding volume hierarchy [Rubin/
Whitted,Bouville]

2) Octree [Glassner,Kaplan,Fujimoto]

3) Linear grid subdivision [Fujimoto]

4) Ray Classification [Arvo/Kirk]

We sometimes refer to these as “subspaces”.
This means a (convex) volume, a collection of
objects within that volume, and some technique
for intersecting a ray with those objects. This
technique is part of an “aggregate object”, and
all the objects it manages are the “children”.
Any aggregate object can be the child of any
other aggregate object, and appears essentially
as a bounding volume and intersection tech-
nique to its parent. In other words, it behaves
Jjust like a primitive object.

Encapsulating a subspace as just another
“object” is very convenient. This is an approach
which we originally agreed upon in order to
make it possible to “mix and match” our favorite
acceleration techniques within the same ray
tracer for testing, benchmarking, and develop-
ment purposes. Several additional benefits
emerged from this. For one, aggregate objects
also provided a clean way to encapsulate opera-
tors, such as “boolean subtract. “ More impor-
tantly, however, it provided a new way to cope
with complex environments.

As an example of the latter benefit I'll de-

scribe an amusement park scene which we ray
traced and animated. The setting consisted of
anumber of fairly detailed rides and attractions
spread throughout a park, a few trees, a fractal
mountain, and two characters who visit several
of the rides. We often showed closeups of
objects which reflected the rest of the park (a
somewhat scaled down version of the teapot
reflecting the stadium). There were in the
neighborhood of 10,000 primitive objects (not
including fractal mountains), which doesn't
sound like much anymore, but I think it still
represents a fairly challenging scene to ray
trace; particularly for animating.

The organization of the scene suggested
three very natural levels of detail. A typical
example of this is

I) Entire park (a collection of rides, trees,
and mountains)

II) Triple-decker Merry-go-round (one of the
rides)

III) A character riding a horse (a “detail” of a
ride)

Clearly a single linear grid would not do well
here because of the scale involved. Very signifi-
cant collections of primitives would end up
clumped into single voxels. Octrees, on the
other hand, can deal with this problem but don’t
enjoy quite the “voxel walking” speed of the
linear grid. This suggests a compromise.

Our initial approach was to place a coarse
linear grid around the whole park, then another
linear grid (or octree) around each ride, and
frequently a bounding box hierarchy around
small clusters of primitives which would fall
entirely with a voxel of even the second-level
(usually 16x16x16) linear grid. The low-level
bounding box hierarchies were also a way of
grouping repeated sub-structures into objects
which could be “instanced” without replicating
all the geometry. This is similar to the approach
taken by Snyder and Barr.

Later, we began to use ray classification at
the top level because, for one thing, it did some
optimizations on first-generation rays. The
other levels of the hierarchy were kept in place
for the most part, effectively giving the RC (ray
classification) aggregate object a “coarser” view
of the world. This drastically cut down the size
ofthe candidate sets it built and allowed it torun
well on machines with less than 16 MB of
physical memory. Of course, this also “put
blinders” on the RC object by not allowing it to

(continued on page 7)

Volume 2, Number 1



The Ray Tracing News

Simulated Annealing
(continued from Page 6)

distinguish between objects inside the “black
boxes.” This is obviously a space/time trade-
off. Being able to nest the subspaces easily
provided the flexibility to make trade-offs of this
nature.

A small but interesting additional benefit
which falls out of nesting subspaces is that it's
possible to take better advantage of “sparse”
transformations; that is, to transform a ray (or
normal) with fewer multiplies and adds by tak-
ing advantage of matrices which contain many
zeros. Observe that the same trick of transform-
ing the rays into a canonical object space before
doing an intersection test (and transforming the
normal on the way out) also works for aggregate
objects. Though this can mean transforming a
ray several times before it even reaches a primi-
tive object, quite often the transforms which are
lower in the hierarchy are very simple (e. g. scale
and translate). There are cases when a “dense”
(l.e. expensive) transform gets the ray into a
subspace where most of the objects have
“sparse” (i.e. cheap) transforms. If N objects are
tested before finding the closest intersection,
the job can (occasionally) be done with one
dense transform and N sparse ones, instead of
N dense transforms. This is particularly true for
a complex object which is built largely from
scaled and translated primitives and then ro-
tated into some strange final orientation. Ifit’s
feasible to make N very small, however, it’s often
more efficient to just pre-concatenate the trans-
forms and toss the autonomous objects, dense
transforms and all, into the parent octree (or
whatever). The nesting mechanism is not with-
out its own cost.

Currently, all of the “high level” decisions
about which subspaces to place where are made
manually and specified in the modeling lan-
guage. This is much harder to do well than we
imagined initially. The trade-offs are very tricky
and sometimes counter-intuitive. A general
rule of thumb which seems to be of value is to
use “adaptive” subspaces (e.g. octree or RC)
where there are tight clusters of geometry, and
a linear grid if the geometry is fairly uniform.
Judicious placement of bounding box hierar-
chies within an adaptive hierarchy is a real art;
it’s easy to do more harm than good. Onthe one
hand, you don’t want to hinder the effectiveness
of the adaptive subspace by creating large

February 1988

clumps of geometry that can’t be partitioned.
On the other hand, a little a priori knowledge
about what’s important and where bounding
boxes will do a good job can often make a big
difference in terms of both time and space (the
space part goes quintuple for RC).

Now, the obvious question to ask is “How
can this be done automatically?” Something
akin to Goldsmith and Salmon’s automatic
bounding volume generation algorithm may be
appropriate. Naturally, in this context, we're
talking about a heterogeneous mixture of “vo-
lumes,” not only differing in shape and surface
area, but also in “cost,” both in terms of space
and time. Think of each subspace as being a
function which allows you to intersect a ray with
a set of objects with a certain expected (i.e.
average) cost. This cost is very dependent upon
the spatial arrangement and characteristics of
the objects in the set, and each type of subspace
provides different trade-offs.. Producing an
optimal organization of subspaces is then a very
nasty combinatorial optimization problem.

An idea which may be of some value is to
use “simulated annealing” to find a near-opti-
mal subspace hierarchy. Here “optimality” can
be phrased in terms of some scalar-valued
objective function which takes relevant factors
such as space and time into account. Simulated
annealing is a technique for probabilistically
exploring the vast solution space of a large
combinatorial optimization problem and find-
ing incremental improvements in the objective
function without getting stuck in a poor local
minimum. It's very closely linked to some ideas
in thermodynamics, and was originally moti-
vated by nature’s ability to find near-optimal
solutions to mind-bogglingly complex optimiza-
tion problems - like getting all the water mole-
cules in a lake into a near-minimum-energy
configuration as the temperature gradually
reaches freezing. It's been fairly successful at
“solving” NP-hard problems such as the trav-
elling salesman and chip placement (which are
practically the same thing).

To apply this technique we think of the
objective function as the “energy” of the system
(which we want to minimize), and we introduce
the notion of gradually dropping “temperature.”
We produce perturbations in the configuration
and then decide whether or not to keep the
result. If we were “greedy” and kept only those
new configurations which lowered the energy at

(continued on page 8)



% The Ray Tracing News

Simulated Annealing
(continued from Page 7)

each step, we would descend immediately into a
local minimum. This may not buy us much if
the initial guess was far from optimal. The
simulated annealing approach, on the other
hand, accepts a new configuration with proba-
bility exp(dE/kT), where dE is the change in
energy, and T is the current temperature. This
allows more “radical” changes to be explored
which initially appear to be counter-productive.
As the temperature is lowered, the algorithm
becomes more greedy. The all-important strat-
egy for randomization and lowering of tempera-
ture is called the “annealing schedule” and is
extremely problem dependent.

The applicability of simulated annealing to
constructing near-optimal hierarchies is very
speculative. It may not be practical at all in this
context. One can imagine the annealing being
far more costly than the unoptimized ray trac-
ing. There are clearly many details which need
to be worked out. For example, one needs to get
a handle on the distribution of rays which willbe
intersected with the environment in order to
estimate the efficiency of the various subspaces.
Assuming a uniform distribution is probably a
good first approximation, but there must be
better ways - perhaps through incremental
improvements as the scene is ray traced or,
better still, between successive frames of an
animation.

If this has any chance of working it’s going
to require an interesting mix of science and
“art”. The science is in efficiently estimating the
effectiveness of a subspace (i. e. predicting the
relevant costs) given a collection of objects and
a probability density function of rays. The art is
in selecting an annealing schedule which will let
the possible hierarchies percolate and gradu-
ally “freeze” into a near-optimal configuration.
Doing this incrementally for an animation is a
further twist to simulated annealing to which
I've seen no analogies in the literature.

If you're interested in reading more about
simulated annealing, there’s a very short but
interesting description in Numerical Recipes.
For a more complete treatment see Optimization
by Simulated Annealing, by S. Kirkpatrick, C.
D. Gelatt, Jr., and M. P. Vecchi, in the May 13,
1983 issue of Science. Even if this isn't “the way
of the future,” examining it may lead to some
new insights. @

Top 10 Hit Parade of
Computer Graphics Books
by Eric Haines

One of the most important resources I have
as a computer graphics programmer is a good
set of books, both for education and for refer-
ence. However, there are a lot of wonderful
books that I learn about years after I could have
first used them. Alternately, I will find that
books I consider classics are unknown by oth-
ers. So, I would like to collect a list of recom-
mended reading and reference from you all, to
be published laterin the year. I would especially
like a recommendation for good books on filter-
ing and on analytic geometry. Right now I am
reading Digital Image Processing by Gonzalez
and Wintz and have A Programmer’s Geometry
by Bowyer and Woodwark on order, but am not
sure these fit the bill. An Introduction to Splines
for use in Computer Graphics and Geometric
Modeling by Bartels, Beatty, and Barsky looks
like a great resource on splines, but I have read
only four chapters so far so am leaving it off the
list for now.

Without further ado, here are my top ten
book recommendations. Most should be well
known to you all, and so are listed mostly as a
kernel of core books I consider useful. I look
forward to your additions!

The Elements of Programming Style, 2nd
Edition, Brian W. Kernighan, P.J. Plauger, 168
pages, Bell Telephone Laboratories Inc, 1978.

All programmers should read this book. Itis
truly an Elements of Style for programmers.
Examples of bad coding style are taken from
other textbooks, corrected, and discussed.
Wonderful and pithy.

Fundamentals of Interactive Computer
Graphics, James D. Foley, A. Van Dam, 664
pages, Addison-Wesley Inc, 1982.

A classic, covering just about everything
once over lightly.

Principles of Interactive Computer Graphics,
2nd Edition, William M. Newman, R.F. Sproull,
541 pages, McGraw-Hill Inc, 1979.

The other classic. It’s older (e.g. ray-tracing
did not exist at this point), but gives another
perspective on various algorithms.

(continued on Page 9)

Volume 2, Number 1



: The Ray Tracing News

Top 10 Books

(continued from Page 8)

Mathematical Elements for Computer Graph-
ics, David F. Rogers, J.A. Adams, 39 pages,
McGraw-Hill Inc, 1976.

An oldie but goodie, its major thrust is a
thorough coverage of 2D and 3D transforma-
tions, along with some basics on spline curves
and surfaces.

Procedural Elements for Computer Graphics,
David F. Rogers, 433 pages, McGraw-Hill Inc,
1985.

For information on how to actually imple-
ment a wide variety of graphics algorithms, from
Bresenham’s line drawer on up through ray-
tracing, this is the best book I know. However,
for complicated algorithms I would recommend
also reading the original papers.

Numerical Recipes, William H. Press, B.P.
Flannery, S.A. Teukolsky, W.T. Vetterling, 818
pages, Cambridge University Press, 1986.

Chock-full of information on numerical
algorithms, including code in FORTRAN and
PASCAL (no “C”, unfortunately). The best part
of thisbook is that they give good advice on what
methods are appropriate for different types of
problems.

A First Course in Numerical Analysts, 2nd
Edition, Anthony Ralston, P. Rabinowitz, 556
pages, McGraw-Hill Inc, 1978.

Tom Duff's recommendation says it best:
“This book is so good that some colleges refuse
to use it as a text because of the difficulty of

finding exam questions that are not answered in
the book”. It covers material in depth which
Numerical Recipes glosses over.

C: A Reference Manual, Samuel P. Harbison,
G.L. Steele Jr., 352 pages, Prentice-Hall Inc,
1984.

A comprehensive and comprehensible
manual on “C”,

The Muythical Man-Month, Frederick P.
Brooks Jr, 195 pages, Addison-Wesley Inc,
1982.

A classic on the pitfalls of managing soft-
ware projects, especially large ones. A great
book for beginning to learn how to schedule
resources and make good predictions of when
software really is going to be finished.

Programming Pearls, Jon Bentley, 195
pages, Bell Telephone Laboratories Inc, 1986.

Though directed more towards systems and
business programmers, there are a lot of clever
coding techniques to be learnt from this book.
Also, it’s just plain fun reading.

As an added bonus, here’s one more that I
could not resist:

Patterns in Nature, Peter S. Stevens, 240
pages, Little, Brown and Co. Inc, 1974.

The thesis is that simple patterns recur
again and again in nature and for good reasons.
A quick read with wonderful photographs (my
favorite is the comparison of a turtle shell with
a collection of bubbles forming a similar shape).
Quite a few graphics researchers have used this
book for inspiration in simulating natural proc-
esses. @

A Rendering Trick and Puzzle

by Eric Haines

B

February 1988 9



The Ray Tracing News

Efficiency Tricks
by Eric Haines

Efficiency Tricks, by Eric Haines

Given a ray-tracer which has some basic
efficiency scheme in use, how can we make it
faster? Some of my tricks are below - what are
yours?

[HBV stands for Hierarchical Bounding
Volumes]

Speed-up #1: [HBV and probably Octree]
Keep track of the closest intersection distance.
Whenever a primitive (i.e. something that exists
- not a bounding volume) is hit, keep its distance
as the maximum distance to search. During
further intersection testing use this distance to
cut short the intersection calculations.

Speed-up #2: [HBV and possibly Octree]
When building the ray tree, keep the ray-tree
around which was previously built. For each
ray-tree node, intersect the object in the old ray
tree, then proceed to intersect the new ray tree.
By intersecting the old object first you can
usually obtain a maximum distance immedi-
ately, which can then be used to aid Speed-up
#1.

Speed-up #3: When shadow testing, keep
the opaque object (if any) which shadowed each
light for each ray-tree node. Try these objects

immediately during the next shadow testing at
that ray-tree node. Odds are that whatever
shadowed your last intersection point will
shadow again. If the object is hit you can
immediately stop testing because the light is not
seen.

Speed-up #4: When shadow testing, save
transparent objects for later intersection. Only
if no opaque object is hit should the transparent
objects be tested.

Speed-up #5: Don't calculate the normal for
each intersection. Get the normal only after all
intersection calculations are done and the clos-
est object for each node is know: after all, each
ray can have only one intersection point and one
normal. (Saving intermediate results is recom-
mended for some intersection calculations.)

Speed-up #6: [HBV only] When shooting
rays from a surface (e.g. reflection, refraction, or
shadow rays), get the initial list of objects to
intersect from the bounding volume hierarchy.
For example, a ray beginning on a sphere must
hit the sphere’s bounding volume, so include all
other objects in this bounding volume in the
immediate test list. The bounding volume
which is the father of the sphere’s bounding
volume must also automatically be hit, and its
other sons should automatically be added to the
test list, and so on up the object tree. Note also
that this list can be calculated once for any
object, and so could be created and kept around
under a least-recently-used storage scheme. ®

(Advertisement)

RayKo - Your One-Stop Hy Traing Supplier

Photon Source

Generate photons when you need O»M

them! Visible light only.

Random Number Generators

Stochastic sampling at its best! ﬁ$ ?

Checkerboard

Everyone's favorite polygonal object.
Original red/yellow or new black/white.

A

Uniform variants from 1-6. When
Shiny Sphere

ordering, specify hard or fuzzy.
Indispensible for ray tracing research.
Many indices of refraction still available.

Mirror

You work hard for those reflections; \"‘/7

let the world see them! Available in
small, large, or gratuitous.

How to Order

Earth residents pay 15% postage and handling.
Prices include delivery costs at the speed of light.

10 Volume 2, Number 1



The Ray Tracing News

Efficient Ray Tracing
in Subdivided Space

by Andrew Glassner

I've been tracing rays in subdivided space
for a few years now, and I've come up with a
bunch of tricks which are yet to be published.
Some of these methods are well known, and I'm
aware of simultaneous but independent inven-
tion of at least two of these techniques.

Repeated Intersections

The first issue is easy: how to avoid repeat-
ing ray-object intersections when an object
straddles several cells. For example, consider
the following 2d scenario, where the ray enters
box A, misses the boomerang, but then strikes
it in box B:

el
/

-] A B

P _—

When the ray enters box A, it computes its
intersection with the boomerang (point P). The
ray then determines that P is outside of A, so the
ray moves on to box B. It doesn’t make sense to
repeat the intersection again. We avoid this
needless expense with a “ray intersection
cache”: we give every ray a unique identification
(I use sequential integers starting at 1, since
that also gives me a total ray count at the end of
the rendering). Every object stores within it two
fields, one each for a ray ID and a ray parameter
value (the scalar s in the ray equation R = RO +
R1s). When we want to intersect a ray and
object, the object first checks the ray number it
contains against the current ray. If they differ,
we calculate the ray-object intersection, store
the ray identification and the ray parameter in
the object’s cache, and return the ray parame-
ter. If the cache ID matches the ray ID, we
immeidately return the ray parameter stored in
the object, thereby avoiding the intersection.
John Amanatides first published this in Euro-
graphics 87.

February 1988 11

Inter-Cell Movement

The next issue involves techniques for
quickly getting from one cell to the next. Here’s
another way to approach that issue, which I call
“neighbor pointers”. Consider the following 2d
diagrams, which illustrate a ray leaving a cell
(which we’ll call Z) through the right-side wall:

A B C

Here we have 3 three possible situations
that can arise when we leave the shaded cell and
pass into the next. In case A, we pass into a
larger cell; in case B, we pass into a cell of equal
size ; and in case C, we pass into a smaller cell.
Note that for cases A and B, it doesn't matter
where we actually pass through the wall when
we exit the shaded cell: we will always end up in
the same cell. Case C is not quite so simple,
since the cell we enter next is dependent on the
position of the ray on the wall when it passes out
of the first cell. What we know for certain,
though, is that the next cell will be a child of a
cell the same size as the cell we're leaving.

To optimize traversal between cells, we can
pre-process the entire database. Each wall of
each cell is given a “neighbor pointer”. This is
the address of the data structure for the appro-
priate cell on the other side of that wall. For
cases A and B, we store the single cell that
shares that wall's boundary. For case C, we
store the cell of the same size as the cell we're
processing. The general rule is that the neigh-
bor of cell Z across wall W is the smallest cell
that shares all of W as seen by Z.

Now let’'s consider actually tracing aray. We
determine that there’s no appropriate intersec-
tion in this box, and we must move on. We find
the nearest wall hit by the ray, and dereference
the neighbor pointer for that wall. We examine
the subdivided flag in that cell description. In
cases A and B, the flag is off, and we're done: we
have the cell description (with its children,
boundaries, and so on) immediately, with no
hashing or other expensive work. In case C, the
flag will be on. Then I compute a point that is

(contintued on page 12)



‘ The Ray Tracing News

Efficient Ray Tracing
(continued from Page 11)

guaranteed to be in the next cell, and descend
the octree from the cell pointed to by the neigh-
bor pointer. We stop descending the tree when
we hit a child leaf.

In effect, cases A and B are instantaneous
movements up and across the tree, repectively.
Case C requires a descent. An alternative way
to handle case C is to build a quadtree on the
wall of the cell, which mimics the octree struc-
ture on the other side of that wall. We descend
the quadtree based on the ray/wall intersec-
tion, and then use the neighbor pointer held by
that quadtree cell. Idon’t bother with this, since
it takes up some memory to store that quadtree,
and it only duplicates the octree structure.

This technique of pre-processed wall point-
ers was independently developed by Arun Ne-
travali and co-workers at Bell Labs.

Subdivision Techniques

Based on what criteria do we subdivide? I
don’t know of a single good answer.

Rather than manage several criteria for each
cell, I apply different criteria in sequence. For
example, one sequence that has worked well for
me is to subdivide on an object-count criterion
until every node either meets the criterion or is
split. I then process the leaves according to a
density criterion: if the ratio of the volume
occupied by the objects to the volume of the cell
is too low, I subdivide. Obviously the object
count and density threshold are numbers that
have to be tweaked by hand for optimum per-
formance. I use 3 objects and a density of .3
most of the time, and that seems to work well.
Pathological cases (or very unlucky orientations
of the objects relative to the octree) can require
some intervention.

Incidentally, the notion of “object count”
should be modified a little bit in the case of
polygons and curved surfaces tied to polygonal
control patches. In these cases, I use a vertex
count instead. To see why, imagine a many-
faceted diamond, where maybe 30 faces could
share a single vertex. That vertex will land in
some cell, and no matter how much we subdi-
vide that cell we're still going to have lots of faces
(some could get eliminated if/when the vertex is
right on a cell wall, but that might take many

generations of subdivision). So I accept the
many faces and move on; the density check that
comes later will tend to make the box around
this vertex quite small.

Shorter Trees

Eric’s “teapot in a football stadium” is a good
demonstration case for the power of what I call
“single—child replacement”. In this technique,
we examine the children produced by subdivid-
ing anode. Ifall of the children are empty except
for one child, then we replace the parent node by
its single, non-empty child. A bit of clever
programming lets us manage this transpar-
ently. Sothe many smaller, useless generations
of cells that would be generated between the
stadium and the teapot disappear as we
descend to the tiny teapot cells. ®

Production Notes

12 Volume 2, Number 1



	Scan 0
	Scan 1
	Scan 2
	Scan 3
	Scan 4
	Scan 5
	Scan 6
	Scan 7
	Scan 8
	Scan 9
	Scan 10
	Scan 11

