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Newsletter Announcement and
Statement of Purpose

This newsletter is intended to be an informal
arena for discussions and news relevant to the
field of ray tracing, particularly in computer
graphics. ,

At Siggraph 87 a number of folks gathered
together one evening just to discuss ray tracing
and related issues (this was a sequel to the
successful ray tracer’s dinner during Siggraph
’86). Several people at that discussion
expressed a desire to keep in contact, and my
original plan was just to distribute a list of
names and addresses to everyone who had
been there.

But before returning home from Siggraph to
prepare that list I spent a couple of weeks
hiking in the Rockies, and an alternative idea
began to hatch. Irealized that lots of the
information we share when face-to-face gets
repeated when in different groups. And lots of
ideas are discussed that are useful and clever,
but not sufficiently deep or novel for formal
publication. And many practical techniques are
shared; some are published but still unknown,
others are new inventions.

I felt that we could use a year-round forum,
similar to the yearly meetings at Siggraph,
where we could discuss issues that are
interesting to us all.

In response to these feelings, The Ray
Tracing News has been created to publish
information of the following types:

» Notices of events of interest to the ray
tracing community.

* Timely technical information of a useful
or practical nature.

* Articles and letters discussing or debating
interesting topics.

» Information to help researchers share ray
tracing code and databases.

» Algorithms, solutions, or approaches to
interesting problems.

(continued on Page 2)
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A Summary of the Ray
Tracing Roundtable at
Siggraph 87

Andrew Glassner

The 1987 Siggraph Ray Tracing Roundtable
was an informal gathering of about 20 ray
tracing researchers early Thursday evening.
The evening began with a discussion of how to
measure the performance of various ray tracing
algorithms. Although many interesting ideas
were suggested, the group never seemed to
even come near a consensus. It seemed as
though ray tracing algorithms must (at least for
the time being) be compared when rendering a
particular scene, and even then one must know
a good deal about the geometry and physics of
that particular database. Most folks agreed that
“standard databases” and “standard images”
were a good first step in this direction, giving
everyone a yardstick against which to measure.

We then discussed the current collection of
what objects can be ray traced. It was no
surprise that most objects in ray traced images
have well-defined surfaces, although there are a
few notable exceptions, such as density
volumes. We agreed it would be nice to be
able to ray trace fuzzier surfaces with less
sharply defined boundaries.

The subject of caustics drew a range of
opinions. Some believed it to be virtually a
solved problem, others thought that very little
was known about the effect and how to
simulate it. We discussed the approaches
advocated in print, as well as some ideas that
had not yet been published. It seemed that
forward ray tracing of some form would be
necessary, although how that could be
efficiently achieved was not obvious.

We discussed the differences in point-of-
view between those people working on
algorithms for hardware implementation and
those working in software. Clearly ray tracing
is a very simple algorithm to place onto most
parallel machines with good results. But
perhaps the algorithms can be structured in
such a way that new, custom hardware can
make a dramatic contribution. Recent
successes of machines with a very large
number of simple processors have made this
approach particularly attractive. On the other
hand, the flexibility of software
implementations argues that new research is
still practical on uniprocessors.

The intriguing comparisons between ray
tracing and radiosity were then discussed, but
most folks demurred stating an opinion on this
topic until they had read and considered the last
paper of the conference, which presented a
single algorithm combining the two techniques.

The last discussion involved how an
algorithm can be strongly influenced by the
nature of the final images; are they to be used
as frames in an animation or as still images?
Some positive results of work into frame
coherence for animation were mentioned and
discussed.

We closed with a general feeling that our
time had been well spent, and a desire to do it
again next year. Of course, small informal
discussion groups formed spontaneously
throughout the conference, both before and
after the roundtable, to discuss these topics,
new research, and crazy ideas. ®

Newsletter Announcement
(continued from Page 1)

* Reviews or discussions of commercial
products.
» Fun or humorous material.
* Other information relevant to ray tracing.
Submissions may be made by physical mail,
electronic mail, or on a Macintosh disk, as
discussed in the fine print on page 1. I will
endeavor to publish all material as received,
without review, as long as it remains a
manageable quantity and the quality is high.
Please feel free to submit material that you
think is relevant to the ray tracing community,
even if it's not polished results. This is meant
to be our own forum, where we can address
and discuss issues that we feel are relevant.
These issues may concern ray tracing itself, or
the technique in wider contexts, such as image
synthesis or computer graphics as a whole, or
even ray tracing in other fields.
I welcome your comments and submissions.
-Andrew @
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Efficient Boolean Evaluation
of CSG Models for Ray
- Tracing

Andrew Glassner

There are many ways to handle Constructive
Solid Geometry in a ray tracing environment.
Some CSG techniques for ray tracing are more
efficient than others, but most of them are
surprisingly easy to implement.

In this article we will restrict our discussion
of CSG to four operators (three binary, one
unary) on primitive solids. Each operator has a
formal mathematical symbol and semantics, but
they also have ASCII nicknames, which we
will use here. The binary operators are union
(+), intersection (&), and difference (-):
A+B=AVB ; A&B =AAB ; A-B=AA~B
The unary operator is not (~), which simply
inverts its argument. We build complex solids
by creating a binary tree, consisting of
primitive solids at the leaves and CSG
operators at the nodes. To intersect a
composite CSG object wefind the intersections
with the primitive solids and determine which
of these intersections (if any) is also an
intersection with the composite CSG object.

A common theme in the CSG algorithms
we'll look at here is that they ask when a ray
first enters (or finally leaves) the composite
CSG object. This is equivalent to looking for a
change in status of the root node. Each time
we find an intersection with a primitive, we are
either entering or leaving that solid. So we can
say whether, just after the most recent
intersection, we are “inside” or “outside” each
primitve. We can thus also decide if we're
“inside” or “outside” of each node in the tree.
When the root changes from outside to inside,
then the current intersection is a valid entry to
the composite CSG object. When the root
changes from inside to outside, then we're
leaving the CSG object. Note that even if all
primtive solids are convex, the composite solid
built from them in a CSG tree is usually not
convex, so it is possible to enter and leave the
composite solid several times.

Perhaps the most straightforward CSG
algorithm is the method of Roth [Roth82].

This technique finds all intersections where the
ray enters and leaves each primitive object
along its path. The intersections are sorted
along the ray path and Boolean operations are
used to find the sections of the ray where it is
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within the composite solid; the first endpoint of
such a span (measured from the origin of the
ray) is the first valid ray-object intersection
with the composite CSG object. A major
drawback is that the approach as presented
requires all intersections between the ray and
the primitive solids in the database.
Unfortunately, once the first valid intersection
is found the others are useless, and we all
know that we want to avoid computing as
many of these intersections as we can.

Another way to go is to collect the
intersections along the ray path as they occur.
Each intersection is tested against the composite
solid until the first valid intersection with the
complete CSG object is found. So we're
effectively watching the progress of the head of
the ray as it passes through the database.
We're looking for events where the head of the
ray enters or leaves the composite CSG object.
There ate at least two general ways to test the
primtive intersections as they occur, and they
refer to the order in which we process the CSG
tree when we want to classify an intersection:
top-down and bottom-up.

In the top-down approach you start at the
root node of the tree and evaluate its left and
right children. If as a result of this evaluation
the root node changes state, then the
intersection event that caused you to re-evaluate
the tree is a valid entry or exit with the
composite object. Top-down evaluation is
recursive; to find the state of a child you must
evaluate it. Recursion stops at the leaf nodes,
where the head of the ray 1s either inside or
outside the primitive solid at that leaf. There
are a few disadvantages associated with top-
down CSG evaluation. For example, you need
to know a lot about the inside/outside status of
the tree nodes. Some children need not be
evaluated if you're clever (e.g. if an
intersection node determines one child is
“outside,” it need not test the other child, since
it's irrelevant to the status of the node), but
there's still a lot of testing to be done. And at
each node you have two paths to descend;
maybe one gives you a quick classification of
the node status, and the other doesn't; I know
of no algorithm that tells you, in general,
which is the more fruitful path to descend first.

A way I like better is the bottom-up
approach, presented by Bronsvoort
[Bronsvoort86]. In the bottom-up approach
we attach a unique copy of the CSG tree with
every ray. Each CSG node contains a pointer
to its parent, and a Boolean bit which indicates
whether the head of the ray is currently inside

(continued on Pagc 4)
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(continued from Page 3)

or outside the subtree rooted at that node. For
leaf nodes this bit indicates whether the head of
the ray is inside or outside that node's primitive
solid; for internal nodes the bit describes
whether the head of the ray is inside or outside
the composite CSG tree rooted at that node.

To summarize the technique, imagine that
we have a primary ray which begins outside of
all objects; thus every node in the CSG tree
associated with this ray is marked “outside”.
We use standard techniques (with a slight
change described below) to find the first
intersection of this ray with the objects in front
of it. Let's say we find that we've hit some
object. We locate the leaf node containing that
object, toggle its Boolean inside/outside flag
from “outside” to “inside”, and then signal that
node's parent. The parent node looks at its
children and determines whether its status has
just changed; that is, it determines whether the
ray has either entered or left the composite
CSG object for which it is the root. If the node
finds that its state has not changed as a result of
this intersection, then the bottom-up tree
propagation stops right there. We accept that
Intersection as invalid as far as the composite
CSG solid is concerned, and we proceed to
find the next intersection, for which we will
repeat the whole process.

Alternatively, if the node determines that its
status has changed as a result of this
intersection, it flips its status bit and signals its
parent. If the node has no parent then it is the
root of the complete CSG tree, and the ray has
made a valid entry or exit with a complete CSG
object, depending on the inside/outside status
of the root node.

A modification to the intersection algorithm
is what enables us to find the “next
intersection” along a ray's path. It is not
difficult to enhance most ray tracing programs
to get intersections along a given ray beyond
the first. If the program always finds all
intersections between the ray and the database,
then a sorted list of the intersections may be
stored with the ray. When successive
intersections are required, they are simply
taken in order along the list.

If the program uses some form of
acceleration, then the algorithm can usually be
easily modified to give successive
intersections. Space subdivision algorithms
can retain pointers to the last spatial region or
cell entered and the latest object intersected in

that region, and the value of the ray parameter
at that intersection. When another intersection
is required ray/object testing begins again in
that cell, only accepting intersections beyond
the one stored. Bounding volume algorithms
can be enhanced in a similar way, keeping the
stack of bounding volumes around, with
enough information to provide re-entry to the
processing code to find the next intersection.

When a given node is signalled during
bottom-up evaluation, it must determine if its
inside/outside status has changed as a result of
this intersection. Leaf nodes (which point to
objects) are easy; when signalled they always
toggle their bit and signal their parent.

Internal CSG operator nodes are slightly
harder. There are several ways to go about
finding whether one of these nodes should
change state. Perhaps the simplest approach is
to evaluate the operator with the states of its
current children, and then compare the new
state with the. old state and proceed as above
based on whether the old and new states are the
same or different.

Another approach for internal nodes is to
compute a Boolean variable from on the current
children and the old state; this variable is true
when the new state is different and otherwise
false. The formula for this Boolean is slightly
different for each of the three operators. The
diagram on page 5 gives a (rather lengthy)
derivation of these formulae.

To summarize the working of the algorithm
for a ray originating outside of all objects, we
initially set all nodes to “outside”. When we hit
an object, we signal its node. The leaf node
associated with that object toggles its
inside/outside bit and signals its parent. The
parent uses one of the techniques described
above to determine if its status has just
changed. If not then the node does nothing and
the intersection is deemed ineffective; the ray
tracer then looks for the next intersection.
Alternatively, if the status has changed, then
the node flips its status bit and signals its
parent, where the process repeats. If the root
node ever flips its status bit, then the
intersection that caused the change is a valid
intersection with the composite CSG object. If
after flipping its status the root is “in”, then we
have entered the composite object; otherwise
we have left it.

Secondary rays work the same way except
that their CSG tree is initialized not to “all
outside”, but to the status of their parent ray's
CSG tree at the time of intersection. Before the

(continued on Page 6)
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Derivation of Boolean CSG State Change Formulae

One way to determine if a signalled node needs to change state is to
evaluate a Boolean expression involving the current state and the current
children. If this Boolean is true, then the node should toggle to a new state
and signal its parent. If the Boolean is false, then the node does not change
state and we must look for additional intersections. Each of the three CS
operators has its own expression to evaluate, although they are all similar in
form. The accompanying tables derive the correct expression for each
operator.

P We begin by listing all possible configurations of the current state S and
the current children L and R. We then compute S', the new state based on L
and R for the appropriate operator (to simplify the discussion, we will refer to
a generic operator A, which ma?' be either +, —, or &); thus S'=LAR. We
then compute the toggle variable T, which indicates whether the new and cld
states are different; T =S=S'. When T is true then we must toggle. We
could stop here and find a Boolean expression for T, but some additional
analysis will let us derive a simpler expression.

he analysis consists of finding those configurations that are impossible
for our algorithm. For example, a union node may never find itself
responding to a signal when its current state is 0, but both children are 1.
This is because only one of the children maY have just toggled; thus at least
one child had to be 1 before we were signalled, so this node had to have a
current state of 1. To avoid making such logical arguments for all
configurations for all 3 operators, we derive some new variables which will
ultimately tell us which configurations are impossible. It is by ignoring these
impossible configurations that we are able to find a simpler expression for
the toggle variable.

We first ask what state we would be in if the left node had just toggled.
Then the previous value of the left child is not-L (written ~L), and the
previous state would be L~ ~L AR. Ifindeed L had just toggled, then our
current state would be the value of L; we compute L = S = [, which is true if
our current state is consistent with the assumption that the left child just
changed. We now ask the same questions for the right child, computing
B=LA~Rand R=S =R. If neither L nor Ris true, then the current
configuration could not have come from either child just toggling; thus this is
an impossible configuration. We compute a “valid” variable V=L v R. We
can now write down a new column F which has the value of T where V is true,
but has "don't-care” (written ~) where V is false. After all, it doesnt matter
what value we compute for T in configurations that can't occur.

So F is the same as T in all configurations that are '_possible, and "don't-
care” otherwise. We can write the Karnaugh map for F and derive a simple
Boolean expression based on S, L, and R, which gives us the correct value
= Sv (L AR) of T in all possible configurations. So when a node is signalled, it computes

m the appropriate expression for F. If F is true, the node must toggle its
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current state and signal its parent. If Fis false, then processing stops and
we go looking for more intersections.

A (typographically dense) nugget of C code to implement this algorithm might look like this:

signal_versionl(node) CSGnode *node; { Boolean F; /* compute Boolean */
switch (node->operator) ({
case '-': F ( node->S) || (( node->1Child->S) && (!node->rChild->S)); break;
case '+': F {!node->S) || ({(!node->1Child->S) && (!node->rChild->S)):; break;
I

[T}

case '&': F ( node->S) (( node->1Child->S) && ( node->rChild->S)); break;
if (F) { node->S = !node->S;
if (node->parent != NULL) signal (node->parent);

else return(VALID INTERSECTION) ;
} else return(INVALID INTERSECTION):
}
You might want to compare this with a very similar nugget for the alternative approach of computing the

new state and then comparing it to the old:

signal_version2(node) CSGnode *node; { Boolean S; /* compute new state */
switch (node->operator) ({
case '-': S ({ node->1Child->S8) && (!node->rChild->S)); break:
case '+': § (({ node-=>1Child->S) || ( node->rChild->S)):; break:
) :

[/ T

case '&': S (( node->1Child->S) && ( node->rChild->S) break:
if (S != node->S) { node->S = !node->S;
if (node->parent != NULL) signal (node->parent):

else return(VALID_INTERSECTION) ;
} else return(INVALID INTERSECTION):

}
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ray continues, though, it might need a
correction to its tree. Imagine that our primary
ray has just hit the surface of a sphere from the
outside; the CSG status of the sphere is then
toggled from “outside” to “inside”. Now
imagine that reflected and transmitted rays are
generated at this point. The transmitted ray
indeed continues into the body of the sphere,
so its CSG status is “inside” the sphere, just as
it was initialized by the primary ray. But the
reflected ray never enters the sphere; its status
should be “outside” the sphere. To perform
this correction I first assume that the surface at
the point of intersection is locally flat, or at
least not extremely curved (the idea is that any
refracted ray will be inside, any reflected ray
outside). I then compute the dot product of the
direction vector of the secondary ray with the
surface normal; if the result is greater than zero
then this ray has “turned around” with respect
to its parent and this object, so I signal the leaf
node associated with that object (which
propagates the information up the tree by
signalling its parent node). This works for all
secondary rays, including shadow feelers.

Eye rays must also be initialized correctly;
they might start inside of an object. You can
correctly initialize an eye ray by creating a
special auxiliary ray designed just to find this
information, just like how we create shadow
rays to determine illumination. Create a ray
that begins at the eye and point it in any
direction; initialize the CSG status of this ray to
all “outside”. Now trace the ray until it leaves
the database. When you hit a primitive object
with this ray, invert the inside/outside bit for
that node, but don't bother having it signal its
parent. When you finally leave the database,
the status of the CSG tree for that ray is the
correct initial status for all rays beginning at
that fixed eye point.

The bottom-up CSG algorithm can be
implemented quite simply and efficiently; only
maintaining the CSG status trees requires any
really new code (adding enough state to the
intersection routines to allow them to avoid
repeating work for successive intersections is
theoretically easy, but the implementation could
be of any difficulty, depending on your
system).

Another advantage of the bottom-up
approach is that you have the freedom to model
with many small CSG trees in your database,
and you'll only need to evaluate the nodes

relevant to a particular intersection. In this
situation, toggling any root node indicates a
valid CSG intersection.

Appendix I

It’s important that the state of the CSG tree
of any secondary ray (shadow, reflection, or
refraction) be correctly initialized from its
parent. Since most of the time we generate
more than one secondary ray at a surface, we
need some efficient way to pass the status of
the parent’s CSG tree to each child.

Somewhere in the ray-spawning code
there’s probably some kind of stacking
mechanism. This may be explicit (maintaining
your own stack) or implicit (calling a function
or routine with a new ray description as a
parameter, and letting the system keep the stack
in the calling frame). Either way, it would be
inefficient to create a new copy of the entire
CSG tree for each secondary ray; the CSG tree
in a complex environment might have
thousands of nodes!

Of course, we can always trade space and
time. We could encode the status of the entire
CSG tree with some identifier. An extreme
example would be to use Goédel numbering of
the status and node number, converting the
entire tree into some large integer. We could
associate this identifier with the ray and
reconstruct the tree when necessary. This is
probably too difficult and time consuming for
practical use.

The other extreme is to store the entire tree
with each ray. I’d like to avoid that, because
memory consumption will go up very quickly,
since a ray tree typically has many nodes.

A compromise that has worked acceptably
for me is to create a single extra copy of the
entire CSG tree in global memory. Each time
we generate a secondary ray we associate with
that ray a list of all primitive solids which are
classified “inside” in the parent’s CSG tree.
When we need the CSG tree for a given ray,
we take the global tree and initialize all the leaf
nodes to “outside”. We then run through the
list of primitives associated with the ray; the
leaf node corresponding to each of these
primitives is adjusted to be “inside”. We then
pass through each of the interior nodes of the
tree one level at a time, from bottom to top,
evaluating the status of each node based on its
children. In this process we don’t bother with
signalling the parents of nodes that change their
state, since we’re not evaluating an intersection;

(continued on Page 7)
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we’re just adjusting the interior nodes to be
consistent with the leaf nodes. When this step
is complete, the global tree now holds the
correct status for starting out that secondary
ray.

yAs with most algorithms, a bit of hacking
can make this scheme go a bit quicker. For
example, instead of building and storing an
identical list with every secondary ray, create
the list once, associate it with the primary ray
(the ray which caused the new rays to be
spawned), and let secondary rays point to the
list in the primary. When we finally are
finished with the primary ray we can release its
list to free memory.

In the limit, the “inside” list can contain
every leaf node in the tree. We can ameliorate
this problem by keeping count of how many
elements are in the “inside” list. When we have
more than half of the leaf nodes, we flip a bit at
the head of the list and instead store the
“outside” nodes. Thus the list will never
contain more than half of the leaf nodes in the
CSG tree.

Appendix II

It is well known that ~ and A suffice for

writing all Boolean expressions. It was
pointed out to me by Frits Post that we may
also write the CSG operators in terms of 2
CSG primitives. If we choose (~,+) then

A-B =~(~A + ~(~A + ~B))
A&B = ~(~A + ~B)

Here are some set diagrams demonstrating
these equivalences:

A+A+B A+A+B

A+B

September 1987

or if we choose (~, &) as primitives, then

A+B = ~(~A & ~B)
A-B=A&~(A &B)

which we can diagram:

A&B

A&B A&A&B

In fact these equivalences are direct
applications of the class-theoretical expression
of De Morgan's law:

~(A+B)=~A &~B

~(A&B)=~A+~B
Expressing the entire tree in terms of (~, &) is
useful because it can sometimes be detected
when A&B is empty. In this case the tree
simplifies, so that A&B nodes can be ignored,
and A-B nodes turn into just A. The field of
tree rewriting and simplification is still
growing; for example see [Goldfeather86],
[Verhoeve87], and [Jansen87]

Another interesting topic appropriate to CSG
ray tracing I first heard from Wim Bronsvoort.
Let's say that we have a union of two spheres,
one of which is somewhat transparent and the
other opaque. What should be the result of
subtracting this partly transparent sphere from
the solid one? Consider a point of view
looking towards the solid sphere through the
translucent one. Do you see the surface of the
solid sphere where it intersects the other? As
far as I am aware, the semantics of CSG for
non-homogeneous objects have not been well
defined. @
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A Proposal for Standard
Graphics Environments

Eric Haines
3D/Eye, Inc

One concern of the computer graphics
community has been the efficiency of rendering
algorithms. In fields such as ray tracing,
researchers continue to explore which is the
fastest way to find the closest intersection point
for a ray and a set of primitives. The problem
faced by these and other people involved in
computer graphics is a lack of standards.

In the hardware field a metric of polygons
per second is used. In ray tracing, however,
the rendering of a single primitive, such as a
polygon, can be affected by the other primitives
in the environment. For example, another
primitive could cast a shadow or be seen in
reflection from the primitive being rendered.
This has led to timing comparisons based on
the time for calculating ray intersections,
instead of a primitives per second rate. One of
the problems with trying to compare ray
intersection times is that there are almost no
standard test environments. One researcher
will ray trace a car; another, a tree. The
question arises, “How many trees to the
Camaro?”

My proposal is that we should all be using
the same environments. I originally heard of
this idea from Don Greenberg while I was in
Cornell's Program of Computer Graphics. He
and Ed Catmull had once discussed producing
some environments which would be used as
standards for testing rendering algorithms. A
few years later, Tim Kay presented a paper on
efficient ray tracing at Siggraph '86. He
offered his database descriptions to any
researcher who wanted to use them.
Discussions with him and other researchers led
me to create a number of scenes for testing ray
tracing algorithms.

The databases are fairly familiar and
“standard” to the graphics community. The
scenes are generated by the “Standard
Procedural Database” package, or SPD for
short. Each database is generated by a program
written in C. The output of the program is in
text, with information about the view, lighting
conditions, and primitives being output in a
simple format. Presently polygons, polygonal
patches (polygons with a different surface
normal at each vertex), spheres, cylinders, and
cones are supported. The researcher has to
write a program to translate these simple output
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data into the format needed by the algorithm or
hardware being tested.

The SPD package is in the public domain
and can be accessed in a number of ways.
Netlib is distributing the package for free. For
those with access to the Arpanet, write to
“netlib@anl-mcs.arpa”. If electronic mail on
the Unix UUCP network is available, write to
“research!netlib”. In either case, send the one
line message, “Send Haines from graphics.”

A few extra words are in order on netlib.
This library is mostly code for numerical
analysis people, but there are some great hunks
of software and data useful for graphics. Send
the message “send index” for a general index.
The library I like personally is Polyhedra,
which contains 142 descriptions of polyhedra
(vertices, edges, faces, and more). Access this
by typing “send index from polyhedra”. If you
know of any good public domain graphics
software or databases to post to netlib, please
write them (“send index” will give you names
and addresses).

An early, incomplete version of the SPD
package was printed as an appendix in the
notes for the “Introduction to Ray Tracing”
course given at Siggraph '87. For the IBM
PC, the package is available on a 360K 5-1/4"
floppy disk. Send a stamped, self-addressed
disk mailer and blank disk to: Ed Orcutt,
Computer Science & Electrical Engineering,
University of Nevada - Las Vegas, 4505
Maryland Parkway, Las Vegas, NV 89154. If
none of these media are available to you, send
$4 for the latest printed version from me: Eric
Haines, 3D/Eye Inc., 410 E. Upland Rd,
Ithaca NY 14850.

Presently this package is simply a proposal.
Your feedback is needed on a number of
questions, such as what constitutes an average
scene for your applications, what primitives
you use, and your opinions on the package in
general. Timings and statistics for different ray
tracing algorithms are also most welcome. ®

(Editor’s note : these images will be
published in IEEE CG&A, probably in the
November 1987 issue).
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A Small Catalog of Reflectance Spectra

Andrew Glassner

Over the years I have collected a bunch of useful spectra. Most have come from published
literature, others I made myself just by playing around. For historical reasons I keep each

spectrum in 14 equal samples from 380 to 770 nanometers. Here are the spectra, arranged into
two columns each.

September 1987 9



The Ray Tracing News :

The left hand column contains amplitudes from 380-560 nanometers. Ther right hand column
contains amplitudes from 590-770 nanometers. Next to the name of each spectrum I have
indicated its source:
(E) = “An Introduction to Color,” by R. Evans, published by John Wiley and Sons, 1948
(I) = Imaginary color
(M) = appendix to “Colorimetry and Computer Graphics,” by Gary Meyer and Donald Greenberg,
unpublished (I believe the data in that appendix was collected by Rob Cook)

Volume 1, Number 1
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These thumbnail graphs plot amplitude vertically against wavelength horizontally. The order of the plots left-to-right,
top-down, is the same order in which they are presented left-to-right, top-down, on Pages 9, 10, 11, except that the
first chart (giving the sampling wavelengths) has been ignored. Thus, the upper-left plot is Blackbody, to its right is

Brick Red, the first plot in the second row is Copper, and Yellow Gladiolus is in the lower-right corner.




The Ray Tracing News

Call for Contributions

There are many ways that your
participation can make this newsletter an
exciting and useful enterprise. Any well-
written contributions of relevance to the
community are appropriate. Here are some
possible categories that would make good
contributions. You needn't write a whole
article; a brief note would be fine; for example
a list of useful but obscure books, or a list of
the features of your ray tracer, as below.

Program Descriptions

‘What are the capabilities of your ray tracer?
Interesting capabilities include what objects are
available for intersection, anti-aliasing
techniques, and efficiency methods. How do
you describe your databases? Do you support
motion? If you use transformation trees, do
you provide for topological restructuring of the
tree? How do you handle color? What
parameters do you use to describe surface
physics, and how do you specify the shading
for each surface? Do you support textures? If
you handle polygons, do you interpolate
normals before shading? Do you support
constructive solid geometry? Can objects
change over time? What kinds of light sources
do you support?

Light Extinction Coefficients

Even simple light extinction models seem
to work well; for example I=td for constant
density d over a path of length t. What are
good values of d for different materials? A list
of these extinction coefficients for different
materials (air, glass, smoky room) would help
us model these effects without tedious trial and
error. One experimenter's results (coefficients
and pictures) would be a useful reference table.

Textures (procedural and table) and
Surface Spectra

Not everyone has access to sophisticated
scanners. Are there any folks willing to make
available one or more high-quality scanned-in
textures? Good candidates might include
wood, snakeskin, and stone. I'd be willing
handle electronic mail distribution of texture
files with whatever seems the most practical
mechanism.

Has anyone come up with some really nice
little procedural textures they'd be willing to
share? How about actual code fragments, such
as solid textures for wood or marbled rock, or
two-dimensional textures for rough brick or
stucco?

If you have some nice surface spectra (with
any amount of accuracy) sharing them would
help enhance our libraries and images.

Survey Articles

Texture mapping is an interesting subject.
A survey of 2-d parameterizations of 3-d
surfaces would put all the equations and
diagrams in one place. Even special cases
(such as spheres) can be interesting; compare
Mercator, Hyperbolic, Dymaxion, and other
projections - why does the United States
Geological Survey use Polyconic projection for
its topographical quad maps?

Position Papers
A defended position paper can be
stimulating reading. Do you have a point of
view that isn't in the mainstream, that you
believe should be given wider recognition?
Write a position paper and argue your case
persuasively to your colleagues.

Useful Data
Have you collected useful physical data or
experimental values that others might find
useful? Tables of useful data (such as the
spectra in this issue) would enhance the realism
of everyone's images.

Tricks and Hacks
We all have little collections of tricks and
hacks. Code tricks can reduce programming
time, or maybe speed up run time. Some
modelling tricks give cheap pseudo-CSG, or
fillets. Share one or two of your favorite hacks
in a short note for this new column.

Something Else

Do you use an interesting technique that is
published but not well known? A summary
paper would help bring it to everyone's
attention. Perhaps you have an idea you'd like
to see done, but you don't have the time to
follow up on yourself. Here's a good way to
spread the word and encourage others to
investigate it instead.

Deadline

The submission deadline for issue Number
2 is Friday, 4 December 1987. This is when
the material must be in my hands in the
Netherlands, either via electronic mail or
physical delivery. If you're sending physical
mail, don't forget to write the customs
declaration on the outside to speed the
package's journey. See the fine print on page 1
for details about submitting material.
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The Mailing List

Here's the mailing list for the first
issue. Electronic mail addresses
are verbatim as | received them. If
you want to receive further issues
but your name is not on this list
you'll need to write to me with your
name and address; this is true even
if you received this issue in the
mail. Names listed until the double
line were participants at the '87
roundtable in Anaheim.

Andrew Glassner (Editor)
before 20 Dec 87

Delft University of Technology
Faculty of Mathematics & Informatics
Julianalaan 132
2628 BL Delft
The Netherlands

mcvax!dutrun!frits

after 20 Dec 87

Department of Computer Science
UNC-Chapel Hill
Chapel Hill, NC 27514

mcncl!uncl!glassner

Rick Speer
PO Box 2651
Seattle, WA 98111

John Francis
Apollo Computer
270 Bellerica Road
Chelmsford, MA

John Peterson

University of Utah

Department of Computer Science

Salt Lake City, Utah
PETERSON@CS .UTAH.EDU

David Kirk

Apollo Computer

270 Bellerica Road

Chelmsford, MA
DAVE@APOLLO.UUCP

Jim Arvo

Apollo Computer
270 Bellerica Road
Chelmsford, MA

Alan Norton

IBM Research

PO Box 704

Yorktown Heights, NY 10598

Timothy L. Kay

Caltech 256-80

Pasadena, CA 91125
tim@csvax.caltech.edu
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Paul S. Strauss
Box 1910

Brown University
Providence, Rl

Ben Trumbore

120 Rand Hall

Cornell University

lthaca, NY 14853
wbt@squid.tn.cornell.edu

Jeff Goldsmith
JPL510-264

4800 Oak Grove Drive
Pasadena, CA 91109

JEFF$WEGAGHAMLET.CALTECH.EDU

Linda Roy
JPL510-264

4800 QOak Grove Drive
Pasadena, CA 91109

Frederick Fisher

DEC ML05-2/B6

146 Main Street

Maynard, MA 01754
DECWRL: : JACOB: :FISHER

Paul Heckbert

Pixar

PO Box 13719

San Rafael, CA 94913
ucbvax!pixar!ph

Pat Hanrahan

Pixar

PO Box 13719

San Rafael, CA 94913
ucbvax!pixar!pat

Michael R. Kaplan

Dana Computer

550 Del Ray Ave.

Sunnyvale, CA 94086
hplabs!dana!mrk

Don Marsh

801 Waverly, #4

Palo Alto, CA 94301
dmarsh@degas.Berkeley.EDU

Olin Lathrop

Apollo Computer CHF-02-RD

330 Billerica Road

Chelmsford, MA 01824
OLIN@GAPOLLO.UUCP

Eric Haines

3D-Eys, Inc.

410 East Upland Rd.
lthaca, NY 14850

Leonard McMillan
AT&T Pixel Machines
Holmdel, NJ 07733

Darwyn Peachey

Department of Computational
Science

86 Commerce Building
University of Saskatchewan
Saskatcon, Canada S7N 0W0

ucbvax!sask.BITNET !peacheyd

Jeff Hultquist
310 Grey Ghost Avenue
San Jose, CA 95111

Doug Turner

Department of Computer Science
UNC-Chapel Hill

Chapel Hill, NC 27514

decvax!mcnc!unc!turner

Lee Westover -

207 Sitterson Hall

Department of Computer Science
UNC-Chapel Hill

Chapel Hill, NC 27514

decvax!mcnc!unc!westover

Roman Kuchkuda

Department of Computer Science
UNC-Chapel Hill

Chapel Hill, NC 27514

decvax!mcnc!unc!kuchkuda

Frits Post

Faculty of Mathematics & Informatics
Delft University of Technology
Julianalaan 132

2628 BL Delft

The Netherlands

mcvax!dutrun!frits

Wim Bronsvoort

Faculty of Mathematics & Informatics
Delfft University of Technology
Julianalaan 132

2628 BL Delft

The Netherlands

mcvax!dutrun!wim

Erik Jansen
Department of Industrial Design
Delft University of Technology
Jaffalaan 9
2628 BX Delft
The Netherlands

dutio!fwj

hpfclalhpfcrs!eye!erich@hplabs.HP.COM
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