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Chapter 0:  Overview 
 
In Ray Tracing In One Weekend, you built a simple brute force path tracer. In this installment 
we’ll add textures, volumes (like fog), rectangles, instances, lights, and support for lots of 
objects using a BVH. When done, you’ll have a “real” ray tracer. 
 
A heuristic in ray tracing that many people-- including me-- believe, is that most optimizations 
complicate the code without delivering much speedup. What I will do in this mini-book is go with 
the simplest approach in each design decision I make. Check www.in1weekend.com for 
readings and references to a more sophisticated approach. However, I strongly encourage you 
to do no premature optimization; if it doesn’t show up high in the execution time profile, it 
doesn’t need optimization until all the features are supported! 
 
The two hardest parts of this book are the BVH and the Perlin textures. This is why the title 
suggests you take a week rather than a weekend for this endeavor. But you can save those for 
last if you want a weekend project. Order is not very important for the concepts presented in this 
book, and without BVH and Perlin texture you will still get a Cornell Box! 
 
Acknowledgments: Thanks to Becker for his many helpful comments on the draft and to 
Matthew Heimlich for spotting a critical motion blur error. Thanks to Andrew Kensler, Thiago Ize, 
and Ingo Wald for advice on ray-AABB tests. Thanks to David Hart and Grue Debry for help with 
a bunch of the details. Thanks to Jean Buckley for editing. 
 
 
Chapter 1:   Motion Blur 
 
When you decided to ray trace, you decided visual quality was worth more run-time. In your 
fuzzy reflection and defocus blur you needed multiple samples per pixel. Once you have taken a 

http://www.in1weekend.com/


step down that road, the good news is that almost all effects can be brute-forced. Motion blur is 
certainly one of those. In a real camera, the shutter opens and stays open for a time interval, 
and the camera and objects may move during that time. Its really an average of what the 
camera sees over that interval that we want. We can get a random estimate by sending each 
ray at some random time when the shutter is open. As long as the objects are where they 
should be at that time, we can get the right average answer with a ray that is at exactly a single 
time. This is fundamentally why random ray tracing tends to be simple. 
 
The basic idea is to generate rays at random times while the shutter is open and intersect the 
model at that one time. The way it is usually done is to have the camera move and the objects 
move, but have each ray exist at exactly one time. This way the “engine” of the ray tracer can 
just make sure the objects are where they need to be for the ray, and the intersection guts don’t 
change much. 
 
For this we will first need to have a ray store the time it exists at: 
 

 
 
Now we need to modify the camera to generate rays at a random time between time1 and 
time2. Should the camera keep track of time1 and time2 or should that be up to the user of 
camera when a ray is created? When in doubt, I like to make constructors complicated if it 
makes calls simple, so I will make the camera keep track, but that’s a personal preference. Not 
many changes are needed to camera because for now it is not allowed to move; it just sends 



out rays over a time period.

 
 
We also need a moving object. I’ll create a sphere class that has its center move linearly from 
center0 at time0 to center1 at time1. Outside that time interval it continues on, so those times 
need not match up with the camera aperture open close. 
 

 
 
An alternative to making a new moving sphere class is to just make them all move and have the 
stationary ones have the same begin and end point. I’m on the fence about that trade-off 
between fewer classes and more efficient stationary spheres, so let your design taste guide you. 
 



The intersection code barely needs a change: center just needs to become a function 
center(time): 
 

 
 
Be sure that in the materials you have the scattered rays be at the time of the incident ray. 

 
 
If we take the example diffuse spheres from scene at the end of the last book and make them 
move from their centers at time=0 to center+vec3(0,0.5*drand48(), 0) at time=1, with the camera 
aperture open over that frame.  
 



 
 
And with these viewing parameters gives: 

 

 
 
 



 
Chapter 2:   Bounding Volume Hierarchies 
 
This part is by far the most difficult and involved part of the ray tracer we are working on. I am 
sticking it in Chapter 2 so the code can run faster, and because it refactors hitable a little, and 
when I add rectangles and boxes we won't have to go back and refactor them. 
 
The ray-object intersection is the main time-bottleneck in a ray tracer, and the time is linear with 
the number of objects. But it’s a repeated search on the same model, so we ought to be able to 
make it a logarithmic search in the spirit of binary search. Because we are sending millions to 
billions of rays on the same model, we can do an analog of sorting the model and then each ray 
intersection can be a sublinear search. The two most common families of sorting are to 1) divide 
the space, and 2) divide the objects. The latter is usually much easier to code up and just as 
fast to run for most models. 
 
The key idea of a bounding volume over a set of primitives is to find a volume that fully encloses 
(bounds) all the objects. For example, suppose you computed a bounding sphere of 10 objects. 
Any ray that misses the bounding sphere definitely misses all ten objects. If the ray hits the 
bounding sphere, then it might hit one of the ten objects. So the bounding code is always of the 
form: 
 
if (ray hits bounding object) 
    return whether ray hits bounded objects 
else 
    return false 
 
A key thing is we are dividing objects into subsets. We are not dividing the screen or the 
volume. Any object is in just one bounding volume, but bounding volumes can overlap. 
 
To make things sub-linear we need to make the bounding volumes hierarchical. For example, if 
we divided a set of objects into two groups, red and blue, and used rectangular bounding 
volumes, we’d have: 



 
Note that the blue and red bounding volumes are contained in the purple one, but they might 
overlap, and they are not ordered-- they are just both inside. So the tree shown on the right has 
no concept of ordering in the left and right children; they are simply inside. The code would be: 
 
if (hits purple) 
     hit0 = hits blue enclosed objects 
     hit1 = hits red enclosed objects 
     if (hit0 or hit1) 
          return true and info of closer hit 
return false  
 
To get that all to work we need a way to make good divisions, rather than bad ones, and a way 
to intersect a ray with a bounding volume. A ray bounding volume intersection needs to be fast, 
and bounding volumes need to be pretty compact. In practice for most models, axis-aligned 
boxes work better than the alternatives, but this design choice is always something to keep in 
mind if you encounter unusual types of models. 
 
From now on we will call axis-aligned bounding rectangular parallelepiped (really, that is what 
they need to be called if precise) axis-aligned bounding boxes, or AABBs. Any method you want 
to use to intersect a ray with an AABB is fine. And all we need to know is whether or not we hit 
it; we don’t need hit points or normals or any of that stuff that we need for an object we want to 
display. 
 
Most people use the “slab” method. This is based on the observation that an n-dimensional 
AABB is just the intersection of n axis-aligned intervals, often called “slabs’’. An interval is just 
the points between two endpoints, e.g., x such that 3 < x < 5, or more succinctly x in (3,5). In 
2D, two intervals overlapping makes a 2D AABB (a rectangle): 
 



 
 
For a ray to hit one interval we first need to figure out whether the ray hits the boundaries. For 
example, again in 2D, this is the ray parameters t0 and t1. (If the ray is parallel to the plane 
those will be undefined.) 
 

 
In 3D, those boundaries are planes. The equations for the planes are x = x0, and x = x1. Where 
does the ray hit that plane? Recall that the ray can be thought of as just a function that given a t 
returns a location p(t): 
 
p(t) = A + tB 
 
That equation applies to all three of the x/y/z coordinates. For example x(t) = Ax + t*Bx. This ray 
hits the plane x = x0 at the t that satisfies this equation: 
 
x0 = Ax + t0* Bx 
 
Thus t at that hitpoint is: 
 
t0 = (x0 - Ax) / Bx 
 



We get the similar expression t1 = (x1 - Ax) / Bx for x1.  
 
The key observation to turn that 1D math into a hit test is that for a hit, the t-intervals need to 
overlap. For example, in 2D the green and blue overlapping only happens if there is a hit: 
 

 
What “do the t intervals in the slabs overlap?” would like in code is something like: 
 
compute (tx0, tx1) 
compute (ty0, ty1) 
return overlap?( (tx0, tx1), (ty0, ty1)) 
 
That is awesomely simple, and the fact that the 3D version also works is why people love the 
slab method: 
 
compute (tx0, tx1) 
compute (ty0, ty1) 
compute (tz0, tz1) 
return overlap?( (tx0, tx1), (ty0, ty1), (tz0, tz1)) 
 
There are some caveats that make this less pretty than it first appears. First, suppose the ray is 
travelling in the negative x direction. The interval (tx0, tx1) as computed above might be 
reversed, e.g. something like (7, 3). Second, the divide in there could give us infinities. And if 
the ray origin is on one of the slab boundaries, we can get a NaN. There are many ways these 
issues are dealt with in various ray tracers’ AABB. (There are also vectorization issues like 
SIMD which we will not discuss here. Ingo Wald’s papers are a great place to start if you want to 
go the extra mile in vectorization for speed.) For our purposes, this is unlikely to be a major 
bottleneck as long as we make it reasonably fast, so let’s go for simplest, which is often fastest 
anyway! First let’s look at computing the intervals: 
 



tx0 = (x0 - Ax) / Bx 
tx1 = (x1 - Ax) / Bx 
 
One troublesome thing is that perfectly valid rays will have Bx=0, causing division by zero. 
Some of those rays are inside the slab, and some are not. Also, the zero will have a +/- sign 
under IEEE floating point. The good news for Bx=0 is that tx0 and tx1 will both be +infty or both 
be -infty if not between x0 and x1. So, using min and max should get us the right answers: 
 
tx0 = min((x0 - Ax) / Bx, (x1 - Ax) / Bx); 
tx1 = max((x0 - Ax) / Bx, (x1 - Ax) / Bx); 
 
The remaining troublesome case if we do that is if Bx = 0 and either x0 - Ax = 0 or x1-Ax = 0 so 
we get a NaN. In that case we can probably accept either hit or no hit answer, but we’ll revisit 
that later. 
 
Now, let’s look at that overlap function. Suppose we can assume the intervals are not reversed 
(so the first value is less than the second value in the interval) and we want to return true in that 
case. The boolean overlap that also computes the overlap interval (f, F) of intervals (d,D) and 
(e, E) would be: 
 
bool overlap(d, D, e, E, f, F)  
     f = max(d, e) 
     F = min(D, E) 
     return (f < F) 
 
If there are any NaNs running around there, the compare will return false so we need to be sure 
our bounding boxes have a little padding if we care about grazing cases (and we probably 
should because in a ray tracer all cases come up eventually). With all three dimensions in a 
loop and passing in the interval tmin, tmax we get: 
 



 
 
Note that the built-in fmax() is replaced by ffmax() which is quite a bit faster because it doesn’t 
worry about NaNs and other exceptions. In reviewing this intersection method, Andrew Kensler 
at Pixar tried some experiments and has proposed this version of the code which works 
extremely well on many compilers, and I have adopted it as my go-to method: 
 

 
 
We now need to add a function to compute bounding boxes to all of the hitables. Then we will 
make a hierarchy of boxes over all the primitives and the individual primitives, like spheres, will 
live at the leaves. That function returns a bool because not all primitives have bounding boxes 
(e.g., infinite planes). In addition, objects move so it takes time1 and time2 for the interval of the 
frame and the bounding box will bound the object moving through that interval. 



 
 
For a sphere, that bounding_box function is easy:  
 

 
 
For moving sphere, we can take the box of the sphere at t0, and the box of the sphere at t1, and 
compute the box of those two boxes: 
 

 
 
For lists you can store the bounding box at construction, or compute it on the fly.   I like doing it 
the fly because it is only usually called at BVH construction. 
 

 
This requires the surrounding_box function for aabb which computes the bounding box of two 
boxes.: 
 



 
 
 
 
A BVH is also going to be a hitable--  just like lists of hitables. It’s really a container, but it can 
respond to the query “does this ray hit you?”. One design question is whether we have two 
classes, one for the tree, and one for the nodes in the tree; or do we have just one class and 
have the root just be a node we point to. I am a fan of the one class design when feasible. Here 
is such a class: 
 
 

 
 
Note that the children pointers are to generic hitables. They can be other bvh_notes, or spheres, 
or any other hitable.  
 
The hit function is pretty straightforward: check whether the box for the node is hit, and if so, 
check the children and sort out any details: 
 



 
 
The most complicated part of any efficiency structure, including the BVH, is building it. We do 
this in the constructor. A cool thing about BVHs is that as long as the list of objects in a 
bvh_node gets divided into two sub-lists, the hit function will work. It will work best if the division 
is done well, so that the two children have smaller bounding boxes than their parent’s bounding 
box, but that is for speed not correctness. I’ll choose the middle ground, and at each node split 
the list along one axis. I’ll go for simplicity: 
 

1) randomly choose an axis 
2) sort the primitives using library qsort  
3) put half in each subtree 

 
I used the old-school C qsort rather than the C++ sort because I need a different compare 
operator depending on axis, and qsort takes a compare function rather than using the less-than 
operator. I pass in a pointer to pointer-- this is just C for “array of pointers” because a pointer in 
C can also just be a pointer to the first element of an array. 
When the list coming in is two elements, I put one in each subtree and end the recursion. The 
traverse algorithm should be smooth and not have to check for null pointers, so if I just have one 
element I duplicate it in each subtree. Checking explicitly for three elements and just following 
one recursion would probably help a little, but I figure the whole method will get optimized later. 
This yields: 
 



 
 
The check for whether there is a bounding box at all is in case you sent in something like an 
infinite plane that doesn’t have a bounding box. We don’t have any of those primitives, so it 
shouldn’t happen until you add such a thing. 
 
The compare function has to take void pointers which you cast. This is old-school C and 
reminded me why C++ was invented. I had to really mess with this to get all the pointer junk 
right. If you like this part, you have a future as a systems person! 

  
 
 
Chapter 3 Solid Textures 
 



A texture in graphics usually means a function that makes the colors on a surface procedural. 
This procedure can be synthesis code, or it could be an image lookup, or a combination of both. 
We will first make all colors a texture. Most programs keep constant rgb colors and textures 
different classes so feel free to do something different, but I am a big believer in this architecture 
because being able to make any color a texture is great. 
 

 
 
Now we can make textured materials by replacing the vec3 color with a texture pointer: 
 

 
where you used to have 
new lambertian(vec3(0.5, 0.5, 0.5))) 
now you should replace the vec3(...) with new constant_texture(vec3(...)) 
new lambertian(new constant_texture(vec3(0.5, 0.5, 0.5)))) 
 
We  can create a checker texture by noting that the sign of sine and cosine just alternates in a 
regular way and if we multiply trig functions in all three dimensions, the sign of that product 
forms a 3D checker pattern. 



 
 
Those checker odd/even pointers can be to a constant texture or to some other procedural 
texture. This is in the spirit of shader networks introduced by Pat Hanrahan back in the 1980s. 
 
If we add this to our random_scene() function’s base sphere: 

 
We get: 
 

 
If we add a new scene: 



 
With camera: 
 

 
We get: 
 

 
 
 
 
 
Chapter 4  Perlin Noise 
 



To get cool looking solid textures most people use some form of Perlin noise. These are named 
after their inventor Ken Perlin. Perlin texture doesn’t return white noise like this: 

 
 
Instead it returns something similar to blurred white noise: 

 
 

A key part of Perlin noise is that it is repeatable: it takes a 3D point as input and always returns 
the same randomish number. Nearby points return similar numbers. Another important part of 
Perlin noise is that it be simple and fast, so it’s usually done as a hack. I’ll build that hack up 
incrementally based on Andrew Kensler’s description.  
 
We could just tile all of space with a 3D array of random numbers and use them in blocks. You 
get something blocky where the repeating is clear: 



 
 
Let’s just use some sort of hashing to scramble this, instead of tiling. This has a bit of support 
code to make it all happen: 
 
 
 
 
 



  
 
 
 
 
 
 
Now if we create an actual texture that takes these floats between 0 and 1 and creates grey 
colors: 



 
 
 
And we can use that one some spheres: 
 

  
 
With the same camera as before: 

 
Add the hashing does scramble as hoped: 
 
 

 



To make it smooth, we can linearly interpolate: 
 

 
 
And we get: 
 

 
 
 
Better, but there are obvious grid features in there. Some of it is Mach bands, a known 
perceptual artifact of linear interpolation of color. A standard trick is to use a hermite cubic to 
round off the interpolation: 
 



 
This gives a smoother looking image: 

 
 
 
It is also a bit low frequency. We can scale the input point to make it vary more quickly: 
 

 
 
which gives: 



 
 
 
This is still a bit grid blocky looking, probably because the min and max of the pattern always 
lands exactly on the integer x/y/z. Ken Perlin’s very clever trick was to instead put random unit 
vectors (instead of just floats) on the lattice points, and use a dot product to move the min and 
max off the lattice. So, first we need to change the random floats to random vectors: 
 

 
 
These vectors are any reasonable set of irregular directions, and I won't bother to make them 
exactly uniform: 

 
 
The Perlin class is now: 



 
 
And the interpolation becomes a bit more complicated: 

 
This finally gives something more reasonable looking: 
 



 
Very often, a composite noise that has multiple summed frequencies is used. This is usually 
called turbulence and is a sum of repeated calls to noise: 
 
 
 

 
Here fabs() is the math.h absolute value function. 
 
Used directly, turbulence gives a sort of camouflage netting appearance: 



 
 
However, usually turbulence is used indirectly. For example, the “hello world” of procedural solid 
textures is a simple marble-like texture. The basic idea is to make color proportional to 
something like a sine function, and use turbulence to adjust the phase (so it shifts x in sin(x)) 
which makes the stripes undulate. Commenting out straight noise and turbulence, and giving a 
marble-like effect is: 

 
Which yields: 
 



 
 
 
 
Chapter 5: Image Texture Mapping 
 
We used the hitpoint p before to index a procedure solid texture like marble. We can also read 
in an image and use a 2D  (u,v) texture coordinate to index into the image.  
 
A direct way to use scaled (u,v) in an image is to round the u and v to integers, and use that as 
(i,j) pixels. This is awkward, because we don’t want to have to change the code when we 
change image resolution. So instead, one of the the most universal unofficial standards in 
graphics is to use texture coordinates instead of image pixel coordinates. These are just some 
form of fractional position in the image. For example, for pixel (i,j) in an nx by ny image, the 
image texture position is: 
 
u = i/(nx-1) 
v = j/(nx-1) 
 
This is just a fractional position. For a hitable, we need to also return a u and v in the hit record. 
For spheres, this is usually based on some form of longitude and latitude, i.e., spherical 
coordinates. So if we have a (theta,phi) in spherical coordinates we just need to scale theta and 
phi to fractions. If theta is the angle down from the pole, and phi is the angle around the axis 
through the poles, the normalization to [0,1] would be: 
 
u = phi / (2*Pi) 
v = theta / Pi 
 



To compute theta and phi, for a given hitpoint, the formula for spherical coordinates of a unit 
radius sphere on the origin is: 
 
x = cos(phi) cos(theta) 
y = sin(phi) cos(theta) 
z = sin(theta) 
 
We need to invert that. Because of the lovely math.h function atan2() which takes any number 
proportional to sine and cosine and returns the angle, we can pass in x and y (the cos(theta) 
cancel): 
 
phi = atan2(y, x)  
 
The atan2 returns in the range  -Pi to Pi so we need to take a little care there. The theta is more 
straightforward: 
 
theta = asin(z) 
 
which returns numbers in the range -Pi/2 to Pi/2. 
 
So for a sphere, the u,v coord computation is accomplished by a utility function that expects 
things on the unit sphere centered at the origin. The call inside sphere::hit should be: 
 
get_sphere_uv((rec.p-center)/radius, rec.u, rec.v); 
 
The utility function is: 
 

 
 
Now we also need to create a texture class that holds an image. I am going to use my favorite 
image utility stb_image. It reads in an image into a big array of unsigned char. These are just 
packed RGBs that each range 0..255 for black to fully-on.  
 



 
 
The representation of a packed array in that order is pretty standard. Thankfully, the stb_image 
package makes that super simple-- just include the header in main.h with a #define: 
 
#define STB_IMAGE_IMPLEMENTATION 
#include "stb_image.h" 
 
To read an image from a file eathmap.jpg (I just grabbed a random earth map from the web-- 
any standard projection will do for our purposes), and then assign it to a diffuse material, the 
code is: 
 
int nx, ny, nn; 
unsigned char *tex_data = stbi_load("earthmap.jpg", &nx, &ny, &nn, 0); 
material *mat =  new lambertian(new image_texture(tex_data, nx, ny)); 
 
We start to see some of the power of all colors being textures-- we can assign any kind of 
texture to the lambertian material, and lambertian doesn’t need to be aware of it. 
 
To test this, assign it to a sphere, and then temporarily cripple the color() function in main to just 
return attenuation. You should get something like: 
 
 
 



 
 
 
 
Chapter 6 Rectangles and Lights 
 
First, let’s make a light emitting material. We need to add an emitted function (we could also add 
it to hit_record instead-- that’s a matter of design taste). Like the background, it just tells the ray 
what color it is and performs no reflection. It’s very simple: 

 
 
So that I don’t have to make all the non-emitting materials implement emitted(), I have the base 
class return black: 



 
 
 
Next, let’s make the background black in our color function, and pay attention to emitted.: 
 

 
 
Now, let’s make some rectangles. Rectangles are often convenient for modelling man-made 
environments. I’m a fan of doing axis-aligned rectangles because they are easy. (We’ll get to 
instancing so we can rotate them later.) 
 
First, here is a rectangle in an xy plane. Such a plane is defined by its z value. For example, z = 
k. An axis-aligned rectangle is defined by lines x=x0, x=x1, y=y0, y=y1. 
 
 
 

 



To determine whether a ray hits such a rectangle, we first determine where the ray hits the 
plane. Recall that a ray p(t) = a + t*b has its z component defined by z(t) = az + t*bz. 
Rearranging those terms we can solve for what the t is where z=k. 
 
t = (k-az) / bz 
 
Once we have t, we can plug that into the equations for x and y: 
 
x = ax + t*bx 
 
y = ay + t*by 
 
It is a hit if x0 < x < x1 and y0 < y < y1.  
 
The actual xy_rect class is thus: 
 

 
And the hit function is: 

 
 
If we set up a rectangle as a light: 



 
 
We get: 

 
Note that the light is brighter than (1,1,1). This allows it to be bright enough to light things. 
 
Fool around with making some spheres lights too. 
 
 



 
 
 
Now let’s add the other two axes and the famous Cornell Box. 
 
This is yz and xz. 

 
 
With unsurprising hit functions: 



 
 

 
Let’s make the 5 walls and the light of the box: 

 
And the view info: 



 
 
We get: 

 
This is very noisy because the light is small. But why are the other walls missing? They are 
facing the wrong way. We need outward facing normals. Let’s make a hitable that does nothing 
but hold another hitable, but reverses the normals: 

 
This makes Cornell: 
 



 
 

 
 
And voila: 
 
 

 
 
 
Chapter 7 Instances 
 
The Cornell Box usually has two blocks in it. These are rotated relative to the walls. First, let’s 
make an axis-aligned block primitive that holds 6 rectangles: 



 
Now we can add two blocks (but not rotated) 

 
This gives: 
 
 

 
 



Now that we have boxes, we need to rotate them a bit to have them match the real Cornell box. 
In ray tracing, this is usually done with an instance. An instance is a geometric primitive that has 
been moved or rotated somehow. This is especially easy in ray tracing because we don’t move 
anything; instead we move the rays in the opposite direction. For example, consider a 
translation (often called a move). We could take the pink box at the origin and add 2 to all its x 
components, or (as we almost always do in ray tracing) leave the box where it is, but in its hit 
routine subtract 2 off the x-component of the ray origin.  

 
 
Whether you think of this as a move or a change of coordinates is up to you. The code for this, 
to move any underlying hitable is a translate instance.  

 
 



Rotation isn’t quite as easy to understand or generate the formulas for. A common graphics 
tactic is to apply all rotations about the x, y, and z axes. These rotations are in some sense 
axis-aligned. First, let’s rotate by theta about the z-axis. That will be changing only x and y, and 
in ways that don’t depend on z. 
 
 

 
 
This involves some basic trigonometry that uses formulas that I will not cover here. That gives 
you the correct impression it’s a little involved, but it is straightforward, and you can find it in any 
graphics text and in many lecture notes. The result for rotating counter-clockwise about z is: 
 
x’ = cos(theta)*x - sin(theta)*y 
y’ = sin(theta)*x + cos(theta)*y 
 
The great thing is that it works for any theta and doesn’t need any cases for quadrants or 
anything like that. The inverse transform is the opposite geometric operation: rotate by -theta. 
Here, recall that cos(theta) = cos(-theta) and sin(-theta) = -sin(theta), so the formulas are very 
simple. 
 
Similarly, for rotating about y (as we want to do for the blocks in the box) the formulas are: 
 
x’ = cos(theta)*x + sin(theta)*z 
z’ = -sin(theta)*x + cos(theta)*z 
 
And about the x-axis: 
 
y’ = cos(theta)*y - sin(theta)*z 
z’ = sin(theta)*y + cos(theta)*z 
 
Unlike the situation with translations, the surface normal vector also changes, so we need to 
transform directions too if we get a hit. Fortunately for rotations, the same formulas apply. If you 



add scales, things get more complicated. See the web page www.in1weekend.com for links to 
that. 
 
For a y-rotation class we have: 

 
With constructor: 

 
And the hit function: 
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And the changes to Cornell is: 

 
Which yields: 
 

 
 
 
 



 
 
Chapter 8 Volumes  
 
One thing it’s nice to add to a ray tracer is smoke/fog/mist. These are sometimes called volumes 
or participating media. Another feature that is nice to add is subsurface scattering, which is sort 
of like dense fog inside an object. This usually adds software architectural mayhem because 
volumes are a different animal than surfaces. But a cute technique is to make a volume a 
random surface. A bunch of smoke can be replaced with a surface that probabilistically might or 
might not be there at every point in the volume. This will make more sense when you see the 
code. 
 
First, let’s start with a volume of constant density. A ray going through there can either scatter 
inside the volume, or it can make it all the way through like the middle ray in the figure. More 
thin transparent volumes, like a light fog, are more likely to have rays like the middle one. How 
far the ray has to travel through the volume also determines how likely it is for the ray to make it 
through. 
 
 

 
 
 
As the ray passes through the volume, it may scatter at any point. The denser the volume, the 
more likely that is. The probability that the ray scatters in any small distance dL is: 
 
probability = C*dL 
 
where C is proportional to the optical density of the volume. If you go through all the differential 
equations, for a random number you get a distance where the scattering occurs. If that distance 



is outside the volume, then there is no “hit”. For a constant volume we just need the density C 
and the boundary. I’ll use another hitable for the boundary. The resulting class is: 

 
The scattering function of isotropic picks a uniform random direction: 

 
And the hit function is: 



 
 
The reason we have to be so careful about the logic around the boundary is we need to make 
sure this works for ray origins inside the volume. In clouds, things bounce around a lot so that is 
a common case.  
 
If we replace the two blocks with smoke and fog (dark and light particles) and make the light 
bigger (and dimmer so it doesn’t blow out the scene) for faster convergence: 
 
 



 
 
We get: 

 
 
Chapter 9: A Scene Testing All New Features 
 
Let’s put it all together, with a big thin mist covering everything, and a blue subsurface reflection 
sphere (we didn’t implement that explicitly, but a volume inside a dielectric is what a subsurface 



material is). The biggest limitation left in the renderer is no shadow rays, but that is why we get 
caustics and subsurface for free. It’s a double-edged design decision. 

 
 
Running it with 10,000 rays per pixel yields: 



 

 
Now go off and make a really cool image of your own!   See in1weekend.com for pointers to 
further reading and features, and feel free to email questions, comments, and cool images to 
me at ptrshrl@gmail.com 
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