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Chapter 0:  Overview 
 
I’ve taught many graphics classes over the years.  Often I do them in ray tracing, because you 
are forced to write all the code but you can still get cool images with no API. I decided to adapt 
my course notes into a how-to, to get you to a cool program as quickly as possible. It will not be 
a full-featured ray tracer, but it does have the indirect lighting which has made ray tracing a 
staple in movies. Follow these steps, and the architecture of the ray tracer you produce will be 
good for extending to a more extensive ray tracer if you get excited and want to pursue that. 
 
When somebody says “ray tracing” it could mean many things. What I am going to describe is 
technically a path tracer, and a fairly general one. While the code will be pretty simple (let the 
computer do the work!) I think you’ll be very happy with the images you can make.  
 
I’ll take you through writing a ray tracer in the order I do it, along with some debugging tips. By 
the end, you will have a ray tracer that produces some great images. You should be able to do 
this in a weekend.   If you take longer, don’t worry about it.  I use C++ as the driving language, 
but you don’t need to. However, I suggest you do, because it’s fast, portable, and most 
production movie and video game renderers are written in C++. Note that I avoid most “modern 
features” of C++, but inheritance and operator overloading are too useful for ray tracers to pass 
on. I do not provide the code online, but the code is real and I show all of it except for a few 
straightforward operators in the vec3 class. I am a big believer in typing in code to learn it, but 
when code is available I use it, so I only practice what I preach when the code is not available. 
So don’t ask! 
 
I have left that last part in because it is funny what a 180 I have done.   Several readers ended 
up with subtle errors that were helped when we compared code.   So please do type in the 
code, but if you want to look at mine it is at: 
https://github.com/petershirley/raytracinginoneweekend 
 
I assume a little bit of familiarity with vectors (like dot product and vector addition). If you don’t 
know that, do a little review. If you need that review, or to learn it for the first time, check out 
Marschner’s and my graphics text, Foley, Van Dam, et al., or McGuire’s graphics codex. 
 

https://github.com/petershirley/raytracinginoneweekend
http://www.amazon.com/Fundamentals-Computer-Graphics-Fourth-Marschner/dp/1482229390/ref=sr_1_1?ie=UTF8&qid=1453335683&sr=8-1&keywords=peter+shirley
http://www.amazon.com/Computer-Graphics-Principles-Practice-3rd/dp/0321399528/ref=sr_1_1?ie=UTF8&qid=1453335739&sr=8-1&keywords=foley+graphics
http://graphicscodex.com/


If you run into trouble, or do something cool you’d like to show somebody, send me some email 
at ptrshrl@gmail.com 
 
I’ll be maintaining a site related to the book including further reading and links to resources at a 
blog in1weekend related to this book.  
 
Let’s get on with it! 
 
 
Chapter 1:    Output an image 
 
Whenever you start a renderer, you need a way to see an image. The most straightforward way 
is to write it to a file. The catch is, there are so many formats and many of those are complex. I 
always start with a plain text ppm file. Here’s a nice description from Wikipedia: 
 
 

 
 
Let’s make some C++ code to output such a thing: 
 

mailto:ptrshrl@gmail.com
http://in1weekend.com/


 
 
 
There are some things to note in that code: 

1. The pixels are written out in rows with pixels left to right. 
2. The rows are written out from top to bottom. 
3. By convention, each of the red/green/blue components range from 0.0 to 1.0. We will 

relax that later when we internally use high dynamic range, but before output we will tone 
map to the zero to one range, so this code won’t change. 

4. Red goes from black to fully on from left to right, and green goes from black at the 
bottom to fully on at the top. Red and green together make yellow so we should expect 
the upper right corner to be yellow. 

 
Opening the output file (in ToyViewer on my mac, but try it in your favorite viewer and google 
“ppm viewer” if your viewer doesn’t support it) shows: 
 
 



 
 
Hooray!  This is the graphics “hello world”. If your image doesn’t look like that, open the output 
file in a text editor and see what it looks like. It should start something like this: 
 
 

 
 
If it doesn’t, then you probably just have some newlines or something similar that is confusing 
the image reader. 
 
If you want to produce more image types than PPM, I am a fan of stb_image.h available on 
github. 
 
 
Chapter 2:   The vec3 class 
 
Almost all graphics programs have some class(es) for storing geometric vectors and colors. In 
many systems these vectors are 4D (3D plus a homogeneous coordinate for geometry, and 
RGB plus an alpha transparency channel for colors). For our purposes, three coordinates 

http://psgraphics.blogspot.com/2015/06/a-small-image-io-library-stbimageh.html
https://github.com/nothings/stb
https://github.com/nothings/stb


suffices. We’ll use the same class vec3 for colors, locations, directions, offsets, whatever. Some 
people don’t like this because it doesn’t prevent you from doing something silly, like adding a 
color to a location. They have a good point, but we’re going to always take the “less code” route 
when not obviously wrong.  
 
Here’s the top part of my vec3 class: 
 

 
 
I use floats here, but in some ray tracers I have used doubles. Neither is correct-- follow your 
own tastes. Everything is in the header file, and later on in the file are lots of vector operations: 
 
 



 



 



 
 
 
 
 
 
 
Now we can change our main to use this: 
 

 
 
 
Chapter 3:  Rays, a simple camera, and background 
 
The one thing that all ray tracers have is a ray class, and a computation of what color is seen 
along a ray. Let’s think of a ray as a function p(t) = A + t*B. Here p is a 3D position along a line 
in 3D. A  is the ray origin and B is the ray direction. The ray parameter t is a real number (float 
in the code). Plug in a different t and p(t) moves the point along the ray. Add in negative t and 
you can go anywhere on the 3D line. For positive t, you get only the parts in front of A, and this 
is what is often called a half-line or ray. The example C = p(2) is shown here: 
 

 

 



 
 

 
The function p(t) in more verbose code form I call “point_at_parameter(t)”: 
 

 
 
Now we are ready to turn the corner and make a ray tracer.   At the core of a ray tracer is to 
send rays through pixels and compute what color is seen in the direction of those rays.   This is 
of the form calculate which ray goes from the eye to a pixel, compute what that ray intersects, 
and compute a color for that intersection point.    When first developing a ray tracer, I always do 
a simple camera for getting the code up and running. I also make a simple color(ray) function 
that returns the color of the background (a simple gradient). 
 
I’ve often gotten into trouble using square images for debugging because I transpose x and y 
too often, so I’ll stick with a 200x100 image. I’ll put the “eye” (or camera center if you think of a 
camera) at (0,0,0). I will have the y-axis go up, and the x-axis to the right. In order to respect the 
convention of a right handed coordinate system, into the screen is the negative z-axis. I will 
traverse the screen from the lower left hand corner and use two offset vectors along the screen 
sides to move the ray endpoint across the screen. Note that I do not make the ray direction a 
unit length vector because I think not doing that makes for simpler and slightly faster code. 

 
 



 
 
Below in code, the ray r goes to approximately the pixel centers (I won’t worry about exactness 
for now because we’ll add antialiasing later): 

 
 
The color(ray) function linearly blends white and blue depending on the up/downess of the y 
coordinate. I first made it a unit vector so -1.0 < y < 1.0. I then did a standard graphics trick of 
scaling that to 0.0 < t < 1.0. When t=1.0 I want blue. When t = 0.0 I want white. In between, I 
want a blend. This forms a “linear blend”, or “linear interpolation”, or “lerp” for short, between two 



things. A lerp is always of the form:   blended_value = (1-t)*start_value + t*end_value,  with t 
going from zero to one. In our case this produces: 

 
 
 
 
Chapter 4:  Adding a sphere 
 
Let’s add a single object to our ray tracer. People often use spheres in ray tracers because 
calculating whether a ray hits a sphere is pretty straightforward. Recall that the equation for a 
sphere centered at the origin of radius R is x*x + y*y + z*z = R*R. The way you can read that 
equation is “for any (x, y, z), if x*x + y*y + z*z = R*R then (x,y,z) is on the sphere and otherwise 
it is not”. It gets uglier if the sphere center is at (cx, cy, cz): 
 
(x-cx)*(x-cx) + (y-cy)*(y-cy) + (z-cz)*(z-cz)= R*R 
 
In graphics, you almost always want your formulas to be in terms of vectors so all the x/y/z stuff 
is under the hood in the vec3 class. You might note that the vector from center C = (cx,cy,cz) to 
point p = (x,y,z) is (p - C). And dot((p - C),(p - C)) = (x-cx)*(x-cx) + (y-cy)*(y-cy) + (z-cz)*(z-cz). 
So the equation of the sphere in vector form is: 
 
dot((p - c),(p - c)) = R*R 
 
We can read this as “any point p that satisfies this equation is on the sphere”. We want to know 
if our ray p(t) = A + t*B ever hits the sphere anywhere. If it does hit the sphere, there is some t 
for which p(t) satisfies the sphere equation. So we are looking for any t where this is true: 
 
dot((p(t) - c),(p(t) - c)) = R*R 
 
or expanding the full form of the ray p(t) : 
 
dot((A + t*B - C),(A + t*B - C)) = R*R 



 
The rules of vector algebra are all that we would want here, and if we expand that equation and 
move all the terms to the left hand side we get: 
 
t*t*dot(B,B) + 2*t*dot(B,A-C) + dot(A-C,A-C) - R*R = 0 
 
The vectors and R in that equation are all constant and known. The unknown is t, and the 
equation is a quadratic, like you probably saw in your high school math class. You can solve for 
t and there is a square root part that is either positive (meaning two real solutions), negative 
(meaning no real solutions), or zero (meaning one real solution). In graphics, the algebra almost 
always relates very directly to the geometry. What we have is: 

 
 

 
If we take that math and hard-code it into our program, we can test it by coloring red any pixel 
that hits a small sphere we place at -1 on the z-axis: 
 

 
 
What we get is this: 
 



 
 
Now this lacks all sorts of things-- like shading and reflection rays and more than one object-- 
but we are closer to halfway done than we are to our start! One thing to be aware of is that we 
tested whether the ray hits the sphere at all, but t < 0 solutions work fine. If you change your 
sphere center to z = +1 you will get exactly the same picture because you see the things behind 
you. This is not a feature!  We’ll fix those issues next. 
 
 
Chapter 5:   Surface normals and  multiple objects. 
 
First, let’s get ourselves a surface normal so we can shade. This is a vector that is perpendicular 
to the surface, and by convention, points out. One design decision is whether these normals 
(again by convention) are unit length. That is convenient for shading so I will say yes, but I won’t 
enforce that in the code. This could allow subtle bugs, so be aware this is personal preference 
as are most design decisions like that. For a sphere, the normal is in the direction of the hitpoint 
minus the center: 
 

 
On the earth, this implies that the vector from the earth’s center to you points straight up. Let’s 
throw that into the code now, and shade it. We don’t have any lights or anything yet, so let’s just 
visualize the normals with a color map. A common trick used for visualizing normals (because 
it’s easy and somewhat intuitive to assume N is a unit length vector– so each component is 
between -1 and 1) is to map each component to the interval from 0 to 1, and then map x/y/z to 
r/g/b. For the normal we need the hit point, not just whether we hit or not. Let’s assume the 
closest hit point (smallest t). These changes in the code let us compute and visualize N: 



 

 
 
And that yields this picture: 

 
 
Now, how about several spheres? While it is tempting to have an array of spheres, a very clean 
solution is the make an “abstract class” for anything a ray might hit and make both a sphere and 
a list of spheres just something you can hit. What that class should be called is something of a 
quandary-- calling it an “object” would be good if not for “object oriented” programming. 
“Surface” is often used, with the weakness being maybe we will want volumes. “Hitable” 
emphasizes the member function that unites them. I don’t love any of these but I will go with 
“hitable”. 
 



This hitable abstract class will have a hit function that takes in a ray. Most ray tracers have 
found it convenient to add a valid interval for hits tmin to tmax, so the hit only “counts” if tmin < t 
< tmax. For the initial rays this is positive t, but as we will see, it can help some details in the 
code to have an interval tmin to tmax. One design question is whether to do things like compute 
the normal if we hit something; we might end up hitting something closer as we do our search, 
and we will only need the normal of the closest thing. I will go with the simple solution and 
compute a bundle of stuff I will store in some structure. I know we’ll want motion blur at some 
point, so I’ll add a time input variable. Here’s the abstract class: 
 

 
And here’s the sphere (note that I eliminated a bunch of redundant 2’s that cancel each other 



 out):

 
 
And a list of objects: 



 
And the new main: 
 
 
 



 
This yields a picture that is really just a visualization of where the spheres are along with their 
surface normal. This is often a great way to look at your model for flaws and characteristics. 



 
 
Chapter 6:  Antialiasing 
 
When a real camera takes a picture, there are usually no jaggies along edges because the edge 
pixels are a blend of some foreground and some background. We can get the same effect by 
averaging a bunch of samples inside each pixel. We will not bother with stratification, which is 
controversial but is usual for my programs.  For some ray tracers it is critical, but the kind of 
general one we are writing doesn’t benefit very much from it and it makes the code uglier.  We 
abstract the camera class a bit so we can make a cooler camera later. 
 
One thing we need is a random number generator that returns real random numbers. C++ did 
not traditionally have a standard random number generator but most systems have drand48() 
tucked away someplace and that is what I use here. However, newer versions of C++ have 
addressed this issue with the <random> header (if imperfectly according to some experts). 
Whatever your infrastructure, find a function that returns a canonical random number which by 
convention returns  random real in the range 0 <= ran < 1. The “less than” before the 1 is 
important as we will sometimes take advantage of that.  
 
For a given pixel we have several samples within that pixel and send rays through each of the 
samples. The colors of these rays are then averaged: 
 

 

 



 
Putting that all together yields a camera class encapsulating our simple axis-aligned camera 
from before:  

 
 
Main is also changed: 
 

 
 
Zooming into the image that is produced, the big change is in edge pixels that are part 
background and part foreground: 



 
 
 
Chapter 7:    Diffuse Materials 
 
Now that we have objects and multiple rays per pixel, we can make some realistic looking 
materials. We’ll start with diffuse (matte) materials. One question is whether we can mix and 
match shapes and materials (so we assign a sphere a material) or if it’s put together so the 
geometry and material are tightly bound (that could be useful for procedural objects where the 
geometry and material are linked). We’ll go with separate-- which is usual in most renderers-- 
but do be aware of the limitation. 
 
Diffuse objects that don’t emit light merely take on the color of their surroundings, but they 
modulate that with their own intrinsic color. Light that reflects off a diffuse surface has its 
direction randomized. So, if we send three rays into a crack between two diffuse surfaces they 
will each have different random behavior: 
 

 



 
 
They also might be absorbed rather than reflected. The darker the surface, the more likely 
absorption is. (That’s why it is dark!) Really any algorithm that randomizes direction will produce 
surfaces that look matte. One of the simplest ways to do this turns out to be exactly correct for 
ideal diffuse surfaces. (I used to do it as a lazy hack that approximates mathematically ideal 
Lambertian.) 
 
Pick a random point s from the unit radius sphere that is tangent to the hitpoint, and send a ray 
from the hitpoint p to the random point s. That sphere has center (p+N): 
 

 

 
 
We also need a way to pick a random point in a unit radius sphere centered at the origin. We’ll 
use what is usually the easiest algorithm: a rejection method. First, we pick a random point in 
the unit cube where x, y, and z all range from -1 to +1. We reject this point and try again if the 
point is outside the sphere. A do/while construct is perfect for that: 



 
This gives us: 

 
Note the shadowing under the sphere.   This picture is very dark, but our spheres only absorb 
half the energy on each bounce, so they are 50% reflectors.   If you can’t see the shadow, don’t 
worry, we will fix that now.  These spheres should look pretty light (in real life, a light grey). The 
reason for this is that almost all image viewers assume that the image is “gamma corrected”, 
meaning the 0 to 1 values have some transform before being stored as a byte. There are many 
good reasons for that, but for our purposes we just need to be aware of it. To a first 
approximation, we can use “gamma 2” which means raising the color to the power 1/gamma, or 
in our simple case ½, which is just square-root: 

 



 
That yields light grey, as we desire: 

 
 
There’s also a subtle bug in there.   Some of the reflected rays hit the object they are reflecting 
off of not at exactly t=0, but instead at t=-0.0000001 or t=0.00000001 or whatever floating point 
approximation the sphere intersector gives us.   So we need to ignore hits very near zero: 

 
This gets rid of the shadow acne problem.   Yes it is really called that. 
 
 
Chapter 8:  Metal 
 
If we want different objects to have different materials, we have a design decision. We could 
have a universal material with lots of parameters and different material types just zero out some 
of those parameters. This is not a bad approach. Or we could have an abstract material class 
that encapsulates behavior. I am a fan of the latter approach. For our program the material 
needs to do two things: 
 

1. produce a scattered ray (or say it absorbed the incident ray) 
2. if scattered, say how much the ray should be attenuated 

 
This suggests the abstract class: 

 
 
 
 
The hit_record is to avoid a bunch of arguments so we can stuff whatever info we want in there. 
You can use arguments instead; it’s a matter of taste.    Hitables and materials need to know 



each other so there is some circularity of the references.   In C++ you just need to alert the 
compiler that the pointer is to a class, which the “class material” in the hitable class below does: 

 
 
What we have set up here is that material will tell us how rays interact with the surface. 
Hit_record is just a way to stuff a bunch of arguments into a struct so we can send them as a 
group.   When a ray hits a surface (a particular sphere for example), the material pointer in the 
hit_record will be set to point at the material pointer the sphere was given when it was set up in 
main() when we start.    When the color() routine gets the hit_record it can call member 
functions of the material pointer to find out what ray, if any, is scattered. 
 
For the Lambertian (diffuse) case we already have, it can either scatter always and attenuate by 
its reflectance R, or it can scatter with no attenuation but absorb the fraction 1-R of the rays. Or 
it could be a mixture of those strategies. For Lambertian materials we get this simple class:  
 

 
Note we could just as well only scatter with some probability p and have attenuation be 
albedo/p. Your choice. 
 
For smooth metals the ray won’t be randomly scattered. The key math is: how does a ray get 
reflected from a metal mirror?   Vector math is our friend here: 
 
 



 
 
The reflected ray direction in red is just (v + 2B). In our design, N is a unit vector, but v may not 
be. The length of B should be dot(v,N). Because v points in, we will need a minus sign yielding: 

 
 
The metal material just reflects rays using that formula: 

 
We need to modify the color function to use this: 



 
You will also need to modify the sphere class to have a material pointer to it.  And add some 
metal spheres: 

 
 
Which gives: 



 
 
We can also randomize the reflected direction by using a small sphere and choosing a new 
endpoint for the ray: 
 

 

 
The bigger the sphere, the fuzzier the reflections will be. This suggests adding a fuzziness 
parameter that is just the radius of the sphere (so zero is no perturbation). The catch is that for 
big spheres or grazing rays, we may scatter below the surface. We can just have the surface 
absorb those. We’ll put a maximum of 1 on the radius of the sphere which yields: 
 
 

 
 



 
We can try that out by adding fuzziness 0.3 and 1.0 to the metals: 
 

 
 
Chapter 9:  Dielectrics 
 
Clear materials such as water, glass, and diamonds are dielectrics. When a light ray hits them, it 
splits into a reflected ray and a refracted (transmitted) ray. We’ll handle that by randomly 
choosing between reflection or refraction and only generating one scattered ray per interaction. 
 
The hardest part to debug is the refracted ray. I usually first just have all the light refract if there 
is a refraction ray at all. For this project, I tried to put two glass balls in our scene, and I got this 
(I have not told you how to do this right or wrong yet, but soon!): 

 
Is that right?   Glass balls look odd in real life. But no, it isn’t right. The world should be flipped 
upside down and no weird black stuff. I just printed out the ray straight through the middle of the 
image and it was clearly wrong. That often does the job. 
 
The refraction is described by Snell’s law: 
 
n sin(theta) = n’ sin(theta’) 
 



Where n and n’ are the refractive indices (typically air = 1, glass = 1.3-1.7, diamond = 2.4) and 
the geometry is: 

 

 
 
One troublesome practical issue is that when the ray is in the material with the higher refractive 
index, there is no real solution to Snell’s law and thus there is no refraction possible. Here all the 
light is reflected, and because in practice that is usually inside solid objects, it is called “total 
internal reflection”. This is why sometimes the water-air boundary acts as a perfect mirror when 
you are submerged. The code for refraction is thus a bit more complicated than for reflection: 
 
 

 
 
And the dielectric material that always refracts when possible is: 



 
Attenuation is always 1-- the glass surface absorbs nothing.   The attenuation = vec3(1.0, 1.0, 
0.0) above will also kill the blue channel which is the type of color bug that can be hard to find-- 
it will give a color shift only.   Try it the way it is and then change it to attenuation = vec3(1.0, 
1.0, 1.0) to see the difference. 
 
If we try that out with these parameters: 

 
We get: 

 
 
(The reader Becker has pointed out that when there is a reflection ray the function returns false 
so there are no reflections.   He is right and that is why there are none in the image above.   I 
am leaving this in rather than correcting this because it is a very interesting example of a major 
bug that still leaves a reasonably plausible image.   These sleeper bugs are the hardest bugs to 
find because we humans are not designed to find fault with what we see.) 



 
Now real glass has reflectivity that varies with angle-- look at a window at a steep angle and it 
becomes a mirror. There is a big ugly equation for that, but almost everybody uses a simple and 
surprisingly simple polynomial approximation by Christophe Schlick: 

 
This yields our full glass material: 
 

 
 
(note: the first appearance of “scattered =” above is not needed and in fast is always 
over-written later.   Doesn’t affect result but is a performance bug). 
 
An interesting and easy trick with dielectric spheres is to note that if you use a negative radius, 
the geometry is unaffected but the surface normal points inward, so it can be used as a bubble 
to make a hollow glass sphere: 



 
This gives: 

 
 
Chapter 10:  Positionable camera 
 
Cameras, like dielectrics, are a pain to debug. So I always develop mine incrementally. First, 
let’s allow an adjustable field of view (fov). This is the angle you see through the portal. Since 
our image is not square, the fov is different horizontally and vertically. I always use vertical fov. I 
also usually specify it in degrees and change to radians inside a constructor-- a matter of 
personal taste. 
 
I first keep the rays coming from the origin and heading to the z=-1 plane. We could make it the 
z=-2 plane, or whatever, as long as we made h a ratio to that distance. Here is our setup: 

 

 
 
This implies h = tan(theta/2). Our camera now becomes: 



 
 
With calling it camera cam(90, float(nx)/float(ny)) and these spheres: 

 
gives: 

 
 
To get an arbitrary viewpoint, let’s first name the points we care about. We’ll call the position 
where we place the camera lookfrom, and the point we look at lookat. (Later, if you want, you 
could define a direction to look in instead of a point to look at.) 
 
We also need a way to specify the roll, or sideways tilt, of the camera; the rotation around the 
lookat-lookfrom axis. Another way to think about it is even if you keep lookfrom and lookat 
constant, you can still rotate your head around your nose. What we need is a way to specify an 
up vector for the camera. Notice we already we already have a plane that the up vector should 
be in, the plane orthogonal to the view direction. 
 



 
 
We can actually use any up vector we want, and simply project it onto this plane to get an up 
vector for the camera. I use the common convention of naming a “view up” (vup) vector. A 
couple of cross products, and we now have a complete orthonormal basis (u,v,w) to describe 
our camera’s orientation.  

 
 
Remember that vup, v, and w are all in the same plane. Note that, like before when our fixed 
camera faced -Z, our arbitrary view camera faces -w. And keep in mind that we can-- but we 
don’t have to-- use world up (0,1,0) to specify vup. This is convenient and will naturally keep 
your camera horizontally level until you decide to experiment with crazy camera angles. 
 



 
 
This allows us to change the viewpoint: 
 

 
to get: 

 
 
And we can change field of view to get: 



 
 
Chapter 11:   Defocus Blur 
 
Now our final feature: defocus blur. Note, all photographers will call it “depth of field” so be 
aware of only using “defocus blur” among friends. 
 
The reason we defocus blur in real cameras is because they need a big hole (rather than just a 
pinhole) to gather light.   This would defocus everything, but if we stick a lens in the hole, there 
will be a certain distance where everything is in focus.   The distance to that plane where things 
are in focus is controlled by the distance between the lens and the film/sensor.   That is why you 
see the lens move relative to the camera when you change what is in focus (that may happen in 
your phone camera too, but the sensor moves).   The “aperture” is a hole to control how big the 
lens is effectively.   For a real camera, if you need more light you make the aperture bigger, and 
will get more defocus blur.   For our virtual camera, we can have a perfect sensor and never 
need more light, so we only have an aperture when we want defocus blur. 
 
A real camera has a compound lens that is complicated. For our code we could simulate the 
order: sensor,  then lens,  then aperture, and figure out where to send the rays and flip the 
image once computed (the image is projected upside down on the film). Graphics people 
usually use a thin lens approximation.  
 

 
 



We also don’t need to simulate any of the inside of the camera. For the purposes of rendering 
an image outside the camera, that would be unnecessary complexity. Instead I usually start rays 
from the surface of the lens, and send them toward a virtual film plane, by finding the projection 
of the film on the plane that is in focus (at the distance focus_dist).  
 

 
 
 
 
For that we just need to have the ray origins be on a disk around lookfrom rather than from a 
point: 
 
 
 
 
 
 
 



 
 
Using a big aperture: 
 

 
We get: 

 
 
Chapter 12:  Where next? 



 
First let’s make the image on the cover of this book-- lots of random spheres: 

 
This gives: 
 

 
 
An interesting thing you might note is the glass balls don’t really have shadows which makes 
them look like they are floating.   This is not a bug (you don’t see glass balls much in real life, 



where they also look a bit strange and indeed seem to float on cloudy days).   A point on the big 
sphere under a glass ball still has lots of light hitting it because the sky is re-ordered rather than 
blocked. 
 
 
You now have a cool ray tracer!   What next? 
 

1. Lights. You can do this explicitly, by sending shadow rays to lights. Or it can be done 
implicitly by making some objects emit light,  

2. biasing scattered rays toward them, and then downweighting those rays to cancel out 
the bias. Both work. I am in the minority in favoring the latter approach. 

3. Triangles. Most cool models are in triangle form. The model I/O is the worst and almost 
everybody tries to get somebody else’s code to do this. 

4. Surface textures. This lets you paste images on like wall paper. Pretty easy and a good 
thing to do. 

5. Solid textures. Ken Perlin has his code online. Andrew Kensler has some very cool info 
at his blog. 

6. Volumes and media. Cool stuff and will challenge your software architecture. I favor 
making volumes have the hitable interface and probabilistically have intersections based 
on density. Your rendering code doesn’t even have to know it has volumes with that 
method. 

7. Parallelism. Run N copies of your code on N cores with different random seeds. Average 
the N runs. This averaging can also be done hierarchically where N/2 pairs can be 
averaged to get N/4 images, and pairs of those can be averaged. That method of 
parallelism should extend well into the thousands of cores with very little coding. 

 
Have fun, and please send me your cool images! 
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