
Monday, August 13, 12

Unity: iOS and Android -

Cross-Platform Challenges and Solutions

Renaldas Zioma

Unity Technologies

Monday, August 13, 12

Can render ...

Mobile devices today

Dead Trigger courtesy of MadFingerGames
Monday, August 13, 12

Can render ...

Mobile devices today

Dead Trigger courtesy of MadFingerGames
Monday, August 13, 12

Can render this @ 2048 x 1536

Mobile devices today

CSR Racing courtesy of BossAlien & NaturalMotion
Monday, August 13, 12

Different GPU architectures
• API extensions

Screen resolutions
Performance scale
Drivers
Texture formats

Mobile Platform Challenges

Monday, August 13, 12

ImgTech PowerVR SGX - TBDR (TileBasedDeferred)
• ImgTech PowerVR MBX - TBDR (Fixed Function)

ARM Mali - Tiled (small tiles)
Qualcomm Adreno - Tiled (large tiles)

• Adreno3xx - can switch to Traditional

• glHint(GL_BINNING_CONTROL_HINT_QCOM, GL_RENDER_DIRECT_TO_FRAMEBUFFER_QCOM)

NVIDIA Tegra - Traditional

4 (or 5) GPU Architectures

Monday, August 13, 12

Splits screen into tiles
• small (for example: 16x16) - SGX, MALI
• relatively large (for example 256K) - Adreno

Tile memory is on chip - fast!
Once GPU is done rendering tile
• tile is “resolved” - written out to slower RAM

Tiled Architecture

Monday, August 13, 12

Per-drawcall: polygons are transformed, assigned to tiles, stored
in memory (Parameter Buffer)

Rasterization starts only after all scene drawcalls were processed
• every tile has access to all covering polygons

Per-tile: Occluded polygons are rejected and only visible parts of
polygons are rasterized
• for opaque geometry rasterization will touch every pixel only once
• saves ALU and texture reads

Tiled Deferred Architecture

Monday, August 13, 12

Tiled Deferred Architecture

Vertex shader Parameter Buffer

Frame buffer RAM

Tile Accelerator

Tile RasterizerHidden Surface Removal

On Chip Memory

Rasterization starts only after all scene drawcalls were processed

“Resolve”

Monday, August 13, 12

Sort opaque geom differently for Traditional vs Tiled
• Tiled: sort by material to reduce CPU drawcall overhead
• Traditional: sort roughly front-to-back to maximize ZCull efficiency

• then by material

• Tiled Deferred: render alpha-tested after opaque
• higher chance that expensive alpha-tested pixels will be occluded

Separate render loop for MBX Fixed Function
 optimized for low-end devices, can go faster than GLES2.0 loop, no per-pixel lighting, limited postFX possibilities

 phasing it out

Be more aggressive with 16bit framebuffers on Tiled

Not so scary in practice! Just...

Monday, August 13, 12

Use EXT_discard_framebuffer extensions on Tiled
• will avoid copying data (color/depth/stencil) you're not planning to use

Clear RenderTarget before rendering into it
• otherwise on Tiled driver will copy color/depth/stencil back from RAM
• not clearing is not an optimization!

Not so scary in practice! Just...

Monday, August 13, 12

Benefits
• Tiled: MSAA is almost free (5-10% of rendering time)
• Tiled: AlphaBlending is significantly cheaper
• Tiled: less dithering artifacts for 16bit framebuffers

Caveats
• TBDR: RenderTarget switch might be more expensive
• TBDR: Too much geometry will flush whole pipeline (ParameterBuffer overflow)

Architectural Benefits

Monday, August 13, 12

Reminds recent works
•“Tile-based Deferred Shading”, Andrew Lauritzen, SIGGRAPH2010
•“Tile-based Forward Rendering”, Takahiro Hirada, GDC2012

... suitable for high-end GPUs
• different problems
• but common solutions

Interesting Tiles

Monday, August 13, 12

Most often found resolutions are darker

Screen Resolutions (Android)

Image is a courtesy of OpenSignalMaps

Monday, August 13, 12

Android specific problem!
Graphics Drivers
• bugs
• performance variations
• chaos of 90ies is back!

Quality is dramatically improving on IHV side
• but in many cases mobile vendors won't provide new drivers for their
devices: don't care / security testing / phased out devices...

What is more scary: Drivers!

Monday, August 13, 12

Establish good relations with IHV
Send bug-reports
Automatize testing
• more on auto testing later

Help Google with their open-source testing rig!
• http://source.android.com/compatibility/downloads.html

What is more scary: Drivers!

Monday, August 13, 12

http://source.android.com/compatibility/downloads.html
http://source.android.com/compatibility/downloads.html

Android specific problem!
ETC1 mandatory in GL ES2.0 - but NO Alpha support!
• Instead platform specific formats: PVRTC, ATC, DXT5, ETC2
• No single format which would be supported on all devices

Uncompressed 16bit for textures with Alpha
• slow, large

Yay! GL ES3.0 solves Alpha - mandatory ETC2
• Plus new formats: EAC, ASTC

Multiple Texture formats

Monday, August 13, 12

Pair of ETC textures: RGB in 1st texture + Alpha in 2nd
Self-downloading application
• small bootrstrap app - determines GPU family on 1st run
• downloads and stores pack with GPU specific assets
• Unity: AssetBundles
• GooglePlay: new expansion files (up to 2GB)

GooglePlay filtering
• build multiple versions of the game, each with textures for certain GPU
• <supports-gl-texture> tag in AndroidManifest

Textures with Alpha in GL ES2.0

Monday, August 13, 12

Unified - Vertex & Pixel use the same core
• Workload balancing
• SGX, Adreno, Mali T6xx

Traditional - Vertex and Pixel cores are separate
• Either stage can be bottleneck at any given moment
• Tegra, Mali 4xx, MBX

GPU Architecture: Shader cores

Monday, August 13, 12

Offload work from GPU - skinning on CPU with NEON
• Favors Unified architecture - reduces vertex workload on GPU
• Tegra non Unified, but has 4 very fast NEON cores - so good too

Reuse skinning results: shadows, multi-pass lighting

Reduces code complexity & shader permutations

Skinning + Unified Architecture

Monday, August 13, 12

Results on A9 @ 1Ghz (iPad3), NEON, 1 core:
•1 bones, position+normal+tangent - 12.2 Mverts/sec
•2 bones, position+normal+tangent - 11 Mverts/sec
•4 bones, position+normal+tangent - 6.7 Mverts/sec
•Test: 200 characters each 558 vertices

Skinning on CPU

Monday, August 13, 12

Warning: net result of offloading work to CPU is
trickier when power consumption comes to play!
• game might run faster
• but can drain battery faster too (NEON is power hungry)

Skinning on CPU

Monday, August 13, 12

Ideally would use DirectX11 Compute alike shaders
• if driver could run same shader on GPU or CPU depending on
platform / workload
• all reusable geometry transformations and image PostProcessing

Might be worth trying Transform Feedback in GL ES3.0

Balancing CPU vs GPU

Monday, August 13, 12

Optimal precision for GPU family
• 11/12bit per-component (fixed) - SGX pre543, Tegra
• 16bit per-component (half) - SGX 543, Mali 4xx
• 32bit per-component (float) - Adreno, Mali T6xx
Watch out for precision conversions
• most often will require additional cycles!
• (at least) SGX543 can hide conversion overhead sampling from texture

GPU Architecture: Precision of pixel ops

Monday, August 13, 12

BAD

BAD

OK

Precision mixing examples
struct Input {
 float4 color : TEXCOORD0;
};
fixed4 frag (Input IN) : COLOR
{
 return IN.color; // BAD: float -> fixed conversion
}

fixed4 uniform;
...
half4 result = pow (l, 2.2) + uniform; // BAD: fixed -> half conversion

half4 tex = tex2d (textureRGBA8bit, uv); // OK: conversion for free

Monday, August 13, 12

sRGB reads/writes are not available on mobiles yet
• though some hardware supports already

As a result linear lighting is too expensive
Arguable fixed point (11bit) can be enough for many pixels
• do per-pixel lighting in object space
• do fog per-vertex
• no depth-shadowmaps
• for specular could use texture lookup instead of pow ()
• at least 3 cycles (actually 4 to comply with ES standards)

• pow () result is in half/float precision, requires conversion to fixed

Cross platform precision considerations

Monday, August 13, 12

Cg/HLSL snippets wrapped in custom language
• helps to defines state, multipass rendering and lighting setup

Rationale: maximizing cross-platform applicability
• abstract from mundane shader details
• generate platform specific code in:
• HLSL
• GLSL / GLSL ES
• DirectX or ARB assembly
• AGL
• etc

Cross-platform shaders in Unity

Monday, August 13, 12

Artist specifies high-level shader on
the Material
• ex: "Bumped Specular", "Tree Leaves", "Unlit"

Run-time picks specific platform
shader depending on
• supported feature set

• via Shader Fallback

• state (lights / shadows / lightmaps)
•via builtin Shader Keywords

• user-defined keys
•via Shader LOD + custom Shader Keywords

Cross-platform shaders in Unity

Monday, August 13, 12

“If this shader can not run on this hardware, then try next one”
Fallbacks can be chained

Shader Fallback

Shader "Per-pixel Lit" {
 // shader code here ...
 Fallback "Per-vertex Lit"
}

Monday, August 13, 12

Built-in and custom shader permutations
Using shader pre-processor macros

Shader Keywords

#pragma multi_compile PREFER_HALF_PRECISION
#ifdef PREFER_HALF_PRECISION
 // force all operations to higher precision
#define scalar half
#define vec4 half4

#else
#define scalar fixed
#define vec4 fixed4

#endif

#pragma multi_compile LIGHTING_PER_PIXEL
...
#ifdef LIGHTING_PER_PIXEL
// per pixel-lit
#else
// per vertex-lit
#endif

Monday, August 13, 12

Example triggers custom shader permutation from script

Shader Keywords

// Devices with lots of muscle per pixel
if (iPhone.generation == iPad2Gen ||
 iPhone.generation == iPhone4S ||
 iPhone.generation == iPhone3GS)
 Shader.EnableKeyword (“LIGHTING_PER_PIXEL”);

// Devices with SGX543
if (iPhone.generation == iPad2Gen ||
 iPhone.generation == iPad3Gen ||
 iPhone.generation == iPhone4S)
 Shader.EnableKeyword (“PREFER_HALF_PRECISION”);

Monday, August 13, 12

Shader switch depending on platform performance
• LOD - integer value

Example triggers shader LOD from script

Shader LevelOfDetail

Shader "Lit" {
 SubShader { LOD 200 // per pixel-lit ..
 SubShader { LOD 100 // per vertex-lit ..
}

// Devices with lots of muscle per pixel
if (iPhone.generation == iPad2Gen ||
 iPhone.generation == iPhone4S ||
 iPhone.generation == iPhone3GS)
 Shader.globalMaximumLOD = 200;

Monday, August 13, 12

Surface shading and lighting snippets
• Instead of writing full vertex/pixel shader
• Just snippets of code

Generate all “cruft” automagically depending on platform and state
• Shader generation is done offline

Cross-platform shaders

#pragma surface MySurface Ramp
void MySurface (Input IN, inout SurfaceOutput o) {
 o.Albedo = tex2D (_MainTex, ...);
 o.Albedo *= tex2D (_Detail, ...) * 2;
 o.Normal = UnpackNormal (tex2D (_BumpMap, ...));
}

half4 LightingRamp (SurfaceOutput s, half3 lightDir ...) {
 half2 NdotL = dot (s.Normal, lightDir);
 half3 ramp = tex2D (_Ramp, NdotL);
 half4 l;
 l.rgb = s.Albedo * ramp;
 ...
 return l;
}

Monday, August 13, 12

cgbatch: Takes Cg/HLSL snippets and generates complete shader code in HLSL
Preprocessor step
hlsl2glsl: Converts HLSL to GLSL

• resurrected old ATI’s project, fixed & improved. Open source! https://github.com/aras-p/hlsl2glslfork

glsls-optimizer (1): Offline GPU-independent GLSL optimization
• think inlining, dead code removal, copy propagation, arithmetic simplifications etc.

• 2 year ago many mobile drivers were bad at optimizations - we had 2-10x improvement

• Still very valuable

glsls-optimizer (2): A fork of Mesa3D GLSL compiler that prints out GLSL ES
after all optimizations.
• Open source! https://github.com/aras-p/glsl-optimizer

Automatic code optimization

Monday, August 13, 12

https://github.com/aras-p/hlsl2glslfork
https://github.com/aras-p/hlsl2glslfork
https://github.com/aras-p/glsl-optimizer
https://github.com/aras-p/glsl-optimizer

Shader generation steps in Unity

Cg/HLSL snippets HLSL vertex + pixel shader

GLSL

HLSL shaders

Optimized GLSL

Final GLSL ES vertex + fragment shaders

preprocessorsource

Monday, August 13, 12

No dedicated hardware for blending, write masking,
flexible vertex input in (many) Mobile GPUs
• instead driver will patch shader code
• significant hiccup on the first drawcall /w new shader/state combination

Prewarming
• force driver to do patching during load time
• issue drawcalls with dummy geometry for all shader/state combinations
• in Unity API: Shader.WarmupAllShaders ()

Shader patching

Monday, August 13, 12

Drawcall overhead on CPU
• 0.05ms per average drawcall on CPU (iPad2/iPad3)
• 600 drawcalls will max out CPU @ 30FPS

Sorted by relative cost:
• glDrawXXX: draw call itself
• glUniformXXX: shader uniform uploads
• glVertexAttribPointer: vertex input setup
• state change

Back to scary: ES2.0 API overhead

Monday, August 13, 12

It is not just about drawcall counts
• important to minimize number of uniforms and state changes
• sort by Material
• optimize uniforms in shaders

GL ES2.0 prevents many optimizations
• uniforms can not be treated as a sequential memory - drawcall setup
requires multiple calls
• uniforms are set per shader - calls on every shader change
• no means for binding uniform to a specific register - unlike HLSL

Yay! GL ES3.0 - Uniform Buffer Object!

OpenGL ES2.0 API overhead

Monday, August 13, 12

First reduce state changes and uniform uploads
Reduce overhead by grouping multiple objects with the
same state into one drawcall
Relies on sorting by material first
• applicable to opaque geometry mostly
• not applicable to multi-pass lighting either
• lighting data passed to shaders must be in world or view space

Drawcall batching

Monday, August 13, 12

Suitable for static environment
Static VertexBuffer + Dynamic IndexBuffer
@ Build-time
• objects are combined into a large shared Vertex Buffers
• sharing same material

@ Run-time
• indices of visible objects are appended to dynamic Index Buffer

Unity "static" batching

Monday, August 13, 12

But Dynamic Buffers are tricky on some mobile
platforms (see next)
Instead could:
•@ Build-time organize objects into Octree, traverse in Morton order
and write to shared Vertex Buffer
•@ Run-time traverse in the same (Morton) order, render visible
objects with neighboring Vertex Buffer ranges in a single drawcall
• like “Segment Buffering”, Jon Olick, GPU Gems2
• all buffers are static

Unity "static" batching

Monday, August 13, 12

Suitable for dynamic objects
• with relatively simple geometry (see below)

Transform object vertices to world space on CPU (NEON)
• append to shared dynamic Vertex Buffer and render in one drawcall

Makes sense only for objects with low vertex count
• otherwise transformation cost would outweigh the cost of the drawcall itself
• usually 200-800 vertices per object

Unity "dynamic" batching

Monday, August 13, 12

Never do like this in GL ES2.0!

• will block CPU waiting for GPU to finish rendering from your buffer

Dynamic geometry

for (;my_render_loop;)
 glBindBuffer (..., myBuffer);
 glMapBufferOES (..., GL_WRITE_ONLY_OES);
 // write data
 glUnmapBufferOES (...);
 glDrawElements (...);

Monday, August 13, 12

Geometry of known size (skinning) is easy
• double/triple buffer - render from one buffer, while writing to another
• swap buffers only at the end of the frame

Geometry of arbitrary size (particles, batching) is harder
• no fence / discard support in out-of-the-box GL ES2.0
• Yay for GL ES3.0, again!

Dynamic geometry

Monday, August 13, 12

Buffer renaming/orphaning is supported by some drivers (iOS)

Preallocate multiple buffers
• write to buffer once, mark it “busy” for 1 (or 2) frames and start rendering
• grab next “non-busy” buffer, otherwise allocate more buffers and continue
• could use NV_fence / EGL_sync extension to track if GPU is finished with certain buffer

Do simulation and write all data to buffers before entering render-loop
• and don’t forget to double/triple your buffers

Dynamic geometry of arbitrary size

// orphan old buffer, driver should allocate new storage
glBufferData (..., bytes, 0, GL_STREAM_DRAW);
glMapBufferOES (..., GL_WRITE_ONLY_OES);

Monday, August 13, 12

Automated Testing

Monday, August 13, 12

Run same content on different devices
• different OS updates
• automatic on internal code changes

Capture screenshots and compare to
templates
• per-pixel comparison

Simplified scenes to test specific areas
• our test suite - 238 scenes

Automated Testing

Monday, August 13, 12

Devices we use
• Nexus One (Adreno 205)
• Samsung Galaxy S 2 (Mali 400)
• Nexus S / Galaxy Nexus (SGX 540)
• Motorola Xoom (Tegra2)

Why not more?

Automated Testing

Monday, August 13, 12

Some devices simply crash on some tests
• drivers, argh!

Some shader variations will just produce wrong results
Loosing connection with the host
• hooking up more than one device per PC makes connection more likely
to fail

Test results might differ significantly from device to device
But there are people who manage to workaround this

Automated Testing Challenges

Monday, August 13, 12

AlphaBlending differences on 2 distinct GPUs

Fun with Automated Testing

Monday, August 13, 12

BlendMode differences on 2 distinct GPUs

Fun with Automated Testing

Monday, August 13, 12

ReadPixels

Fun with Automated Testing

Monday, August 13, 12

Q&A

@__ReJ__
Monday, August 13, 12

