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Can render ...

Mobile devices today

Dead Trigger courtesy of MadFingerGames
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Can render ...

Mobile devices today

Dead Trigger courtesy of MadFingerGames
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Can render this @ 2048 x 1536

Mobile devices today

CSR Racing courtesy of BossAlien & NaturalMotion
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Different GPU architectures
• API extensions

Screen resolutions
Performance scale
Drivers
Texture formats

Mobile Platform Challenges
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ImgTech PowerVR SGX - TBDR (TileBasedDeferred)
• ImgTech PowerVR MBX - TBDR (Fixed Function)

ARM Mali - Tiled (small tiles)
Qualcomm Adreno - Tiled (large tiles)

• Adreno3xx - can switch to Traditional

• glHint(GL_BINNING_CONTROL_HINT_QCOM, GL_RENDER_DIRECT_TO_FRAMEBUFFER_QCOM)

NVIDIA Tegra - Traditional

4 (or 5) GPU Architectures
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Splits screen into tiles
• small (for example: 16x16) - SGX, MALI 
• relatively large (for example 256K) - Adreno 

Tile memory is on chip - fast!
Once GPU is done rendering tile
• tile is “resolved” - written out to slower RAM

Tiled Architecture
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Per-drawcall: polygons are transformed, assigned to tiles, stored 
in memory (Parameter Buffer)

Rasterization starts only after all scene drawcalls were processed
• every tile has access to all covering polygons

Per-tile: Occluded polygons are rejected and only visible parts of 
polygons are rasterized
• for opaque geometry rasterization will touch every pixel only once
• saves ALU and texture reads

Tiled Deferred Architecture
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Tiled Deferred Architecture

Vertex shader Parameter Buffer

Frame buffer RAM

Tile Accelerator

Tile RasterizerHidden Surface Removal

On Chip Memory

Rasterization starts only after all scene drawcalls were processed

“Resolve”
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Sort opaque geom differently for Traditional vs Tiled
• Tiled: sort by material to reduce CPU drawcall overhead
• Traditional: sort roughly front-to-back to maximize ZCull efficiency

• then by material

• Tiled Deferred: render alpha-tested after opaque
• higher chance that expensive alpha-tested pixels will be occluded

Separate render loop for MBX Fixed Function
 optimized for low-end devices, can go faster than GLES2.0 loop, no per-pixel lighting, limited postFX possibilities

 phasing it out

Be more aggressive with 16bit framebuffers on Tiled

Not so scary in practice! Just...
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Use EXT_discard_framebuffer extensions on Tiled
• will avoid copying data (color/depth/stencil) you're not planning to use

Clear RenderTarget before rendering into it
• otherwise on Tiled driver will copy color/depth/stencil back from RAM
• not clearing is not an optimization!

Not so scary in practice! Just...
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Benefits
• Tiled: MSAA is almost free (5-10% of rendering time)
• Tiled: AlphaBlending is significantly cheaper
• Tiled: less dithering artifacts for 16bit framebuffers

Caveats
• TBDR: RenderTarget switch might be more expensive
• TBDR: Too much geometry will flush whole pipeline (ParameterBuffer overflow)

Architectural Benefits
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Reminds recent works
•“Tile-based Deferred Shading”, Andrew Lauritzen, SIGGRAPH2010
•“Tile-based Forward Rendering”, Takahiro Hirada, GDC2012

... suitable for high-end GPUs
• different problems
• but common solutions

Interesting Tiles
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Most often found resolutions are darker

Screen Resolutions (Android)

Image is a courtesy of OpenSignalMaps
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Android specific problem!
Graphics Drivers
• bugs
• performance variations
• chaos of 90ies is back!

Quality is dramatically improving on IHV side
• but in many cases mobile vendors won't provide new drivers for their 
devices: don't care / security testing / phased out devices...

What is more scary: Drivers!
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Establish good relations with IHV
Send bug-reports
Automatize testing
• more on auto testing later

Help Google with their open-source testing rig!
• http://source.android.com/compatibility/downloads.html

What is more scary: Drivers!
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Android specific problem!
ETC1 mandatory in GL ES2.0 - but NO Alpha support!
• Instead platform specific formats: PVRTC, ATC, DXT5, ETC2
• No single format which would be supported on all devices

Uncompressed 16bit for textures with Alpha
• slow, large

Yay! GL ES3.0 solves Alpha - mandatory ETC2
• Plus new formats: EAC, ASTC

Multiple Texture formats
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Pair of ETC textures: RGB in 1st texture + Alpha in 2nd
Self-downloading application
• small bootrstrap app - determines GPU family on 1st run
• downloads and stores pack with GPU specific assets
• Unity: AssetBundles
• GooglePlay: new expansion files (up to 2GB)

GooglePlay filtering
• build multiple versions of the game, each with textures for certain GPU
• <supports-gl-texture> tag in AndroidManifest 

Textures with Alpha in GL ES2.0
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Unified - Vertex & Pixel use the same core
• Workload balancing
• SGX, Adreno, Mali T6xx

Traditional - Vertex and Pixel cores are separate
• Either stage can be bottleneck at any given moment
• Tegra, Mali 4xx, MBX

GPU Architecture: Shader cores
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Offload work from GPU - skinning on CPU with NEON
• Favors Unified architecture - reduces vertex workload on GPU
• Tegra non Unified, but has 4 very fast NEON cores - so good too

Reuse skinning results: shadows, multi-pass lighting

Reduces code complexity & shader permutations

Skinning + Unified Architecture
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Results on A9 @ 1Ghz (iPad3), NEON, 1 core:
•1 bones, position+normal+tangent - 12.2 Mverts/sec
•2 bones, position+normal+tangent - 11 Mverts/sec
•4 bones, position+normal+tangent - 6.7 Mverts/sec
•Test: 200 characters each 558 vertices

Skinning on CPU
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Warning: net result of offloading work to CPU is 
trickier when power consumption comes to play!
• game might run faster
• but can drain battery faster too (NEON is power hungry)

Skinning on CPU
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Ideally would use DirectX11 Compute alike shaders
• if driver could run same shader on GPU or CPU depending on 
platform / workload
• all reusable geometry transformations and image PostProcessing

Might be worth trying Transform Feedback in GL ES3.0

Balancing CPU vs GPU
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Optimal precision for GPU family
• 11/12bit per-component (fixed) - SGX pre543, Tegra
• 16bit per-component (half) - SGX 543, Mali 4xx
• 32bit per-component (float) - Adreno, Mali T6xx
Watch out for precision conversions
• most often will require additional cycles!
• (at least) SGX543 can hide conversion overhead sampling from texture

GPU Architecture: Precision of pixel ops
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BAD

BAD

OK

Precision mixing examples
struct Input {
    float4 color : TEXCOORD0;
};
fixed4 frag (Input IN) : COLOR
{
    return IN.color; // BAD: float -> fixed conversion
}

fixed4 uniform;
...
half4 result = pow (l, 2.2) + uniform; // BAD: fixed -> half conversion

half4 tex = tex2d (textureRGBA8bit, uv); // OK: conversion for free
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sRGB reads/writes are not available on mobiles yet
• though some hardware supports already

As a result linear lighting is too expensive
Arguable fixed point (11bit) can be enough for many pixels
• do per-pixel lighting in object space
• do fog per-vertex
• no depth-shadowmaps
• for specular could use texture lookup instead of pow ()
• at least 3 cycles (actually 4 to comply with ES standards)

• pow () result is in half/float precision, requires conversion to fixed

Cross platform precision considerations
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Cg/HLSL snippets wrapped in custom language
• helps to defines state, multipass rendering and lighting setup

Rationale: maximizing cross-platform applicability
• abstract from mundane shader details
• generate platform specific code in:
• HLSL
• GLSL / GLSL ES
• DirectX or ARB assembly
• AGL
• etc

Cross-platform shaders in Unity
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Artist specifies high-level shader on 
the Material
• ex: "Bumped Specular", "Tree Leaves", "Unlit"

Run-time picks specific platform 
shader depending on
• supported feature set

• via Shader Fallback

• state (lights / shadows / lightmaps)
•via builtin Shader Keywords

• user-defined keys
•via Shader LOD + custom Shader Keywords

Cross-platform shaders in Unity
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“If this shader can not run on this hardware, then try next one”
Fallbacks can be chained

Shader Fallback

Shader "Per-pixel Lit" {
    // shader code here ...
    Fallback "Per-vertex Lit"
}
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Built-in and custom shader permutations
Using shader pre-processor macros

Shader Keywords

#pragma multi_compile PREFER_HALF_PRECISION
#ifdef PREFER_HALF_PRECISION
  // force all operations to higher precision
#define scalar half
#define vec4 half4

#else
#define scalar fixed
#define vec4 fixed4

#endif

#pragma multi_compile LIGHTING_PER_PIXEL
...
#ifdef LIGHTING_PER_PIXEL
// per pixel-lit
#else
// per vertex-lit
#endif
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Example triggers custom shader permutation from script

Shader Keywords

// Devices with lots of muscle per pixel
if (iPhone.generation == iPad2Gen ||
    iPhone.generation == iPhone4S ||
    iPhone.generation == iPhone3GS)
    Shader.EnableKeyword (“LIGHTING_PER_PIXEL”);

// Devices with SGX543
if (iPhone.generation == iPad2Gen ||
    iPhone.generation == iPad3Gen ||
    iPhone.generation == iPhone4S)
    Shader.EnableKeyword (“PREFER_HALF_PRECISION”);
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Shader switch depending on platform performance
• LOD - integer value

Example triggers shader LOD from script

Shader LevelOfDetail

Shader "Lit" {
    SubShader { LOD 200 // per pixel-lit ..
    SubShader { LOD 100 // per vertex-lit ..
}

// Devices with lots of muscle per pixel
if (iPhone.generation == iPad2Gen ||
    iPhone.generation == iPhone4S ||
    iPhone.generation == iPhone3GS)
    Shader.globalMaximumLOD = 200;
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Surface shading and lighting snippets
• Instead of writing full vertex/pixel shader
• Just snippets of code

Generate all “cruft” automagically depending on platform and state
• Shader generation is done offline

Cross-platform shaders

#pragma surface MySurface Ramp
void MySurface (Input IN, inout SurfaceOutput o) {
    o.Albedo = tex2D (_MainTex, ...);
    o.Albedo *= tex2D (_Detail, ...) * 2;
    o.Normal = UnpackNormal (tex2D (_BumpMap, ...));
}

half4 LightingRamp (SurfaceOutput s, half3 lightDir ...) {
    half2 NdotL = dot (s.Normal, lightDir);
    half3 ramp = tex2D (_Ramp, NdotL);
    half4 l;
    l.rgb = s.Albedo * ramp;
    ...
    return l;
}
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cgbatch: Takes Cg/HLSL snippets and generates complete shader code in HLSL
Preprocessor step
hlsl2glsl: Converts HLSL to GLSL

• resurrected old ATI’s project, fixed & improved. Open source! https://github.com/aras-p/hlsl2glslfork

glsls-optimizer (1): Offline GPU-independent GLSL optimization
• think inlining, dead code removal, copy propagation, arithmetic simplifications etc.

• 2 year ago many mobile drivers were bad at optimizations - we had 2-10x improvement

• Still very valuable

glsls-optimizer (2): A fork of Mesa3D GLSL compiler that prints out GLSL ES 
after all optimizations.
• Open source! https://github.com/aras-p/glsl-optimizer

Automatic code optimization
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Shader generation steps in Unity

Cg/HLSL snippets HLSL vertex + pixel shader

GLSL

HLSL shaders

Optimized GLSL

Final GLSL ES vertex + fragment shaders

preprocessorsource
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No dedicated hardware for blending, write masking, 
flexible vertex input in (many) Mobile GPUs
• instead driver will patch shader code
• significant hiccup on the first drawcall /w new shader/state combination

Prewarming
• force driver to do patching during load time
• issue drawcalls with dummy geometry for all shader/state combinations
• in Unity API: Shader.WarmupAllShaders ()

Shader patching
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Drawcall overhead on CPU
• 0.05ms per average drawcall on CPU (iPad2/iPad3)
• 600 drawcalls will max out CPU @ 30FPS

Sorted by relative cost:
• glDrawXXX: draw call itself
• glUniformXXX: shader uniform uploads
• glVertexAttribPointer: vertex input setup
• state change

Back to scary: ES2.0 API overhead
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It is not just about drawcall counts
• important to minimize number of uniforms and state changes
• sort by Material
• optimize uniforms in shaders

GL ES2.0 prevents many optimizations
• uniforms can not be treated as a sequential memory - drawcall setup 
requires multiple calls
• uniforms are set per shader - calls on every shader change
• no means for binding uniform to a specific register - unlike HLSL

Yay! GL ES3.0 - Uniform Buffer Object!

OpenGL ES2.0 API overhead

Monday, August 13, 12



First reduce state changes and uniform uploads
Reduce overhead by grouping multiple objects with the 
same state into one drawcall
Relies on sorting by material first
• applicable to opaque geometry mostly
• not applicable to multi-pass lighting either
• lighting data passed to shaders must be in world or view space

Drawcall batching
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Suitable for static environment
Static VertexBuffer + Dynamic IndexBuffer
@ Build-time
• objects are combined into a large shared Vertex Buffers
• sharing same material

@ Run-time
• indices of visible objects are appended to dynamic Index Buffer

Unity "static" batching
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But Dynamic Buffers are tricky on some mobile 
platforms (see next)
Instead could:
•@ Build-time organize objects into Octree, traverse in Morton order 
and write to shared Vertex Buffer
•@ Run-time traverse in the same (Morton) order, render visible 
objects with neighboring Vertex Buffer ranges in a single drawcall
• like “Segment Buffering”, Jon Olick, GPU Gems2
• all buffers are static

Unity "static" batching
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Suitable for dynamic objects
• with relatively simple geometry (see below)

Transform object vertices to world space on CPU (NEON)
• append to shared dynamic Vertex Buffer and render in one drawcall

Makes sense only for objects with low vertex count
• otherwise transformation cost would outweigh the cost of the drawcall itself
• usually 200-800 vertices per object

Unity "dynamic" batching
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Never do like this in GL ES2.0!

• will block CPU waiting for GPU to finish rendering from your buffer

Dynamic geometry

for (;my_render_loop;)
    glBindBuffer (..., myBuffer);
    glMapBufferOES (..., GL_WRITE_ONLY_OES);
    // write data
    glUnmapBufferOES (...);
    glDrawElements (...);
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Geometry of known size (skinning) is easy
• double/triple buffer - render from one buffer, while writing to another
• swap buffers only at the end of the frame

Geometry of arbitrary size (particles, batching) is harder
• no fence / discard support in out-of-the-box GL ES2.0
• Yay for GL ES3.0, again!

Dynamic geometry
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Buffer renaming/orphaning is supported by some drivers (iOS)

Preallocate multiple buffers
• write to buffer once, mark it “busy” for 1 (or 2) frames and start rendering
• grab next “non-busy” buffer, otherwise allocate more buffers and continue
• could use NV_fence / EGL_sync extension to track if GPU is finished with certain buffer

Do simulation and write all data to buffers before entering render-loop
• and don’t forget to double/triple your buffers

Dynamic geometry of arbitrary size

// orphan old buffer, driver should allocate new storage
glBufferData (..., bytes, 0, GL_STREAM_DRAW);
glMapBufferOES (..., GL_WRITE_ONLY_OES);
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Automated Testing
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Run same content on different devices
• different OS updates
• automatic on internal code changes

Capture screenshots and compare to 
templates
• per-pixel comparison

Simplified scenes to test specific areas
• our test suite - 238 scenes

Automated Testing

Monday, August 13, 12



Devices we use
• Nexus One (Adreno 205)
• Samsung Galaxy S 2 (Mali 400)
• Nexus S / Galaxy Nexus (SGX 540)
• Motorola Xoom (Tegra2)

Why not more?

Automated Testing
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Some devices simply crash on some tests
• drivers, argh!

Some shader variations will just produce wrong results
Loosing connection with the host
• hooking up more than one device per PC makes connection more likely 
to fail

Test results might differ significantly from device to device
But there are people who manage to workaround this

Automated Testing Challenges
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AlphaBlending differences on 2 distinct GPUs

Fun with Automated Testing
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BlendMode differences on 2 distinct GPUs

Fun with Automated Testing
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ReadPixels

Fun with Automated Testing
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Q&A
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