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Eric Haines

Naty Hoffman

Angelo Pesce

Micha l Iwanicki
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Chapter 26

Real-Time Ray Tracing

I wanted change and excitement and to shoot off in all directions myself,
like the colored arrows from a Fourth of July rocket.

—Sylvia Plath

Compared to rasterization-based techniques, which is the topic of large parts of this
book, ray tracing is a method that is more directly inspired by the physics of light.
As such, it can generate substantially more realistic images. In the first edition of
Real-Time Rendering, from 1999, we dreamed about reaching 12 frames per second
for rendering an average frame of A Bug’s Life (ABL) between 2007 and 2024. In some
sense we were right. ABL used ray tracing for only a few shots where it was truly
needed, e.g., reflection and refraction in a water droplet. However, recent advances in
GPUs have made it possible to render game-like scenes with ray tracing in real time.
For example, the cover of this book shows a scene rendered at about 20 frames per
second using global illumination with something that starts to resemble feature-film
image quality. Ray tracing will revolutionize real-time rendering.

In its simplest form, visibility determination for both rasterization and ray tracing
can be described with double for-loops. Rasterization is:

for(T in triangles)

for(P in pixels)

determine if P is inside T

Ray tracing can, on the other hand, be described by:

for(P in pixels)

for(T in triangles)

determine if ray through P hits T

So in a sense, these are both simple algorithms. However, to make either of these
fast, you need much more code and hardware than can fit on a business card.1 One
important feature of a ray tracer using a spatial data structure, such as a bounding
volume hierarchy (BVH), is that the running time for tracing a ray is O(log n), where n

1The back of Paul Heckbert’s business card from the 1990s had code for a simple, recursive ray
tracer [34].
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2 26. Real-Time Ray Tracing

is the number of triangles in the scene. While this is an attractive feature of ray tracing,
it is clear that rasterization is also better than O(n), since GPUs have occlusion culling
hardware and rendering engines use frustum culling, deferred shading, and many other
techniques that avoid fully processing every primitive. So, it is a complex matter to
estimate the running time for rasterization in O() notation. In addition, the texture
units and the triangle traversal units of a GPU are incredibly fast and have been
optimized for rasterization over a span of decades.

The important difference is that ray tracing can shoot rays in any direction, not
just from a single point, such as from the eye or a light source. As we will see in
Section 26.1, this flexibility makes it possible to recursively render reflections and
refractions [89], and to fully evaluate the rendering equation (Equation 11.2). Doing
so makes the images just look better. This property of ray tracing simplifies content
creation as well, since less artist intervention is needed [20]. When using rasterization,
artists often need to adjust their creations to work well with the rendering techniques
being used. However, with ray tracing, noise may become apparent in the images.
This can happen when area lights are sampled, when surfaces are glossy, when an
environment map is integrated over, and when path tracing is used, for example.

That said, to make real-time ray tracing be the only rendering algorithm used
for real-time applications, it is likely that several techniques, e.g., denoising, will be
needed to make the images look good enough. Denoising attempts to remove the
noise based on intelligent image averaging (Section 26.5). In the short-term, clever
combinations of rasterization and ray tracing are expected—rasterization is not going
away any time soon. In the longer-term, ray tracing scales well as processors become
more powerful, i.e., the more compute and bandwidth that are provided, the better
images we can generate with ray tracing by increasing the number of samples per
pixel and the recursive ray depth. For example, due to the difficult indirect lighting
involved, the image in Figure 26.1 was generated using 256 samples per pixel. Another
image with high-quality path tracing is shown in Figure 26.6, where the number of
samples per pixel range from 1 to 65,536.

Before diving into algorithms used in ray tracing, we refer you to several relevant
chapters and sections. Chapter 11 on global illumination provides the theory sur-
rounding the rendering equation (Equation 11.2), as well as a basic explanation of ray
and path tracing in Section 11.2.2. Chapter 22 describes intersection methods, where
ray against object tests are essential for ray tracing. Spatial data structures, which are
used to speed up the visibility queries in ray tracing, are described in Section 19.1.1
and in Chapter 25, about collision detection.

26.1 Ray Tracing Fundamentals
Recall from Equation 22.1 that a ray is defined as

q(t) = o + td, (26.1)
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Figure 26.1. A difficult scene with a large amount of indirect lighting rendered with 256 samples per
pixel, with 15 as ray depth, and a million triangles. Still, when zooming it, it is possible to see noise
in this image. There are objects consisting of transparent plastic materials, glass, and several glossy
metallic surfaces as well, all of which are hard to render using rasterization. (Model by Boyd Meeji,
rendered using Keyshot.)

where o is the ray origin and d is the normalized ray direction, with t then being
the distance along the ray. Note that we use q here instead of r to distinguish it
from the right vector r, used below. Ray tracing can be described by two functions
called trace() and shade() . The core geometrical algorithm lies in trace(), which
is responsible for finding the closest intersection between the ray and the primitives
in the scene and returning the color of the ray by calling shade(). For most cases,
we want to find an intersection with t > 0. For constructive solid geometry, we often
want negative distance intersections (those behind the ray) as well.

To find the color of a pixel, we shoot rays through a pixel and compute the pixel
color as some weighted average of their results. These rays are called eye rays or
camera rays. The camera setup is illustrated in Figure 26.2. Given an integer pixel
coordinate, (x, y) with x going right in the image and y going down, a camera position
c, and a coordinate frame, {r,u,v} (right, up, and view), for the camera, and screen
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Figure 26.2. A ray is defined by an origin o and a direction d. The ray tracing setup consists of
constructing and shooting one (or more) rays from the viewpoint through each pixel. The ray shown
in this figure hits two triangles, but if the triangles are opaque, only the first hit is of interest. Note
that the vectors r (right), u (up), and v (view) are used to construct a direction vector d(x, y) of a
sample position (x, y).

resolution of w × h, the eye ray q(t) = o + td is computed as

o = c,

s(x, y) = af

(
2(x+ 0.5)

w
− 1

)
r− f

(
2(y + 0.5)

h
− 1

)
u + v,

d(x, y) =
s(s, y)

‖s(s, y)‖

(26.2)

where the normalized ray direction d is affected by f = tan(φ/2), with φ being the
camera’s vertical field of view, and a = w/h is the aspect ratio. Note that the camera
coordinate frame is left-handed, i.e., r points to the right, u is the up-vector, and v
points away from the camera toward the image plane, i.e., a similar setup to the one
shown in Figure 4.5. Note that s is a temporary vector used in order to normalize
d. The 0.5 added to the integer (x, y) position selects the center of each pixel, since
(0.5, 0.5) is the floating-point center [33]. If we want to shoot rays anywhere in a pixel,
we would instead represent the pixel location using floating point values and the 0.5
offsets are then not added in.

In the naivest implementation, trace() would loop over all the n primitives in the
scene and intersect the ray with each of them, keeping the closest intersection with
t > 0. Doing so yields O(n) performance, which is unacceptably slow except with a
few primitives. To get to O(log n) per ray, we use a spatial acceleration data structure,
e.g., a BVH or a k-d tree. See Chapter 19.1 for descriptions on how to intersection
test a ray using a BVH.

Using trace() and shade() to describe a ray tracer is simple. Equation 26.2 is
used to create an eye ray from the camera position through a location inside a pixel.
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Figure 26.3. A camera ray is created through a pixel and a first call to trace() starts the ray tracing
process in that pixel. This ray hits the ground plane with a normal n. Then shade() is called at this
first hit point, since the goal of trace() is to find the ray’s color. The power of ray tracing comes
from the fact that shade() can call trace() as a help when evaluating the BRDF at that point. Here,
this is done by shooting a shadow ray to the light source, which in this case is blocked by a triangle.
In addition, assuming the surface is specular, a reflection ray is also shot and this ray hits a circle.
At this second hit point, shade() is called again to evaluate the shading. Again, a shadow and a
reflection ray are shot from this new hit point.

This ray is fed to trace(), whose task is to find the color or radiance (Chapter 8) that
is returned along that ray. This is done by first finding the closest intersection along
the ray and then computing the shading at that point using shade(). We illustrate
this process in Figure 26.3. The power of this concept is that shade(), which should
evaluate radiance, can do that by making new calls to trace(). These new rays that
are shot from shade() using trace() can, for example, be used to evaluate shadows,
recursive reflections and refractions, and diffuse ray evaluation. The term ray depth is
used to indicate the number of rays that have been shot recursively along a ray path.
The eye ray has a ray depth of 1, while the second trace() where the ray hits the
circle in Figure 26.3 has ray depth 2.

One use of these new rays is to determine if the current point being shaded is in
shadow with respect to a light source. Doing so generates shadows. We can also take
the eye ray and the normal, n, at the intersection to compute the reflection vector.
Shooting a ray in this direction generates a reflection on the surface, and can be
done recursively. The same process can be used to generate refractive rays. Perfectly
specular reflections and refractions along with sharp shadows is often referred to as
Whitted ray tracing [89]. See Sections 9.5 and 14.5.2 for information on how to compute
the reflection and refraction rays. Note that when an object has a different index of
refraction than the medium in which the ray travels, the ray may be both reflected
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n

n1

n2

n1
reflection
refraction

Figure 26.4. An incoming ray in the top left corner hits a surface whose index of refraction, n2, is
larger than the index of refraction, n1, in which the ray travels, i.e., n2 > n1. Both a reflection ray
and a refraction ray is generated at each hit point (circles).

and refracted. See Figure 26.4. This type of recursion is something that rasterization-
based methods struggle to solve by using various approximations to achieve only a
subset of the effects that can be obtained with ray tracing. Ray casting, the idea of
testing visibility between two points or in a direction, can be used for other graphical
(and non-graphical) algorithms. For example, we could shoot a number of ambient
occlusion rays from an intersection point to get an accurate estimate of that effect.

The functions trace(), shade(), and rayTraceImage(), where the latter is a
function that creates eye rays through each pixel, are used in the pseudocode that
follows. These short pieces of code shows the overall structure of a Whitted ray
tracer, which can be used as a basis for many rendering variants, e.g., path tracing.

rayTraceImage ()

{

for(p in pixels)

color of p = trace(eye ray through p);

}

trace(ray)

{

pt = find closest intersection;

return shade(pt);

}

shade(point)

{

color = 0;

for(L in light sources)

{

trace(shadow ray to L);

color += evaluate BRDF;

}
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lightsource

Figure 26.5. Illustration of path tracing with two rays being shot through a single pixel. All light
gray surfaces are assumed to be diffuse and the darker red rectangle to the right has a glossy BRDF.
At each diffuse hit, a random ray over the hemisphere around the normal is generated and traced
further. Since the pixel color is the average of the two rays’ radiances, the diffuse surface is evaluated
in two directions—one that hits the triangle and one which hits the rectangle. As more rays are
added, the evaluation of the rendering equation becomes better and better.

color += trace(reflection ray);

color += trace(refraction ray);

return color;

}

Whitted ray tracing does not provide a full solution to global illumination. Light
reflected from any direction other than a mirror reflection is ignored, and direct lights
are only represented by points. To fully evaluate the rendering equation, shown in
Equation 11.2, Kajiya [41] proposed a method called path tracing, which is a correct
solution and thus generates images with global illumination. One possible approach
is to compute the first intersection point of an eye ray, and then evaluate shading
there by shooting many rays in different directions. For example, if a diffuse surface
is hit, then one could shoot rays all over the hemisphere at the intersection point.
However, if this process is repeated at the hit points for each of these rays as well,
there is an explosion in rays to evaluate. Kajiya realized that one could instead just
follow a single ray using Monte Carlo based methods to generate its path through the
environment, and average several such path-rays over a pixel. This is how the path
tracing method works. See Figure 26.5. One disadvantage of path tracing is that
many rays are required for the image to converge. To halve the variance, one need to
shoot four times as many rays. See Figure 26.6.

The shade() function is always implemented by the user, so any type of shading
can be used, much like vertex and pixel shading are implemented in a rasterization-
based pipeline. The traversal and intersection testing that takes place in trace() can
be implemented on the CPU, using compute shaders on the GPU, or using DirectX
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Figure 26.6. Top: full image rendered using 65,536 samples per pixel using path tracing: Bottom
from left to right: zoom ins on the same scene rendered using 1, 16, 256, 4,096, and 65,536 samples
per pixel. Notice that there is noise even in the image with 4,096 samples per pixel. (Model by Alexia
Rupod, image courtesy of NVIDIA Corporation.)

or OpenGL. Alternatively, one can use a ray tracing API, e.g., DXR. This is the topic
of the next section.

26.2 Shaders for Ray Tracing
Ray tracing is now tightly integrated into real-time rendering APIs, such as Di-
rectX [59, 91, 92] and Vulkan. In this section we will describe the different types
of ray tracing shaders that have been added to these APIs and can thus be used
together with rasterization. As an example of such a combination, we could first gen-
erate a G-buffer (Chapter 20) using rasterization and then shoot rays from these hit
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Figure 26.7. A ray defined by an origin o, a direction d, and an interval [tmin, tmax]. Only intersections
inside the interval will be found.

points in order to generate reflections and shadows [9, 76]. We call this deferred ray
tracing .

Ray tracing shaders are dispatched to the GPU similar to compute shaders (Sec-
tion 3.10), i.e., over a grid (of pixels). In this section, we follow the naming convention
of DXR [59], the ray tracing addition to DirectX 12. There are five types of ray tracing
shaders [59, 78]:

1. ray generation shader

2. closest hit shader

3. miss shader

4. any hit shader

5. intersection shader

A ray is defined using Equation 26.1 in addition to an interval [tmin, tmax]. The
interval defines the part of the ray where intersections are accepted. See Figure 26.7.
The programmer can add a payload to the ray. This is a data structure that is used
to send data between different ray tracing shaders. An example ray payload could
contain a float4 for the radiance and a float for the distance to the hit point, but
the user can add anything that is needed. However, keeping the ray payload small is
better for performance, since a larger payload may use more registers.

The ray generation shader is the starting point for ray tracing. It can be pro-
grammed just like compute shaders and is able to call a new function TraceRay() ,
which is similar to the trace() function described in Section 26.1. Typically, the ray
generation shader is executed for all the pixels of the screen. The implementation of
fast traversal of a spatial acceleration structure inside TraceRay() is provided by the
driver through the API. It is possible to define a ray type that is connected to different
shaders. For example, it is common to use a certain set of shaders for standard rays,
while simpler shaders can be used for shadow rays. For shadows, rays can be traced
more efficiently since we usually can stop as soon as any intersection has been found
in the ray’s interval, the range from the hit point to the light source.

For standard rays, the first positive intersection point is required. Such rays are
shot by the ray generation shaders. When the closest hit has been found, a closest
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hit shader is executed. Here, the user can implement shade() from Section 26.1,
e.g., shadow ray testing, reflections, refractions, and path tracing. If nothing is hit by
the ray, a miss shader is executed. This is useful to generate a radiance value and
send back via the ray payload. This can be a static background color, a sky color, or
generated using a lookup in an environment map.

The any hit shader is an optional shader that can be used when a scene contains
transparent objects or alpha tested texturing. This shader is executed whenever there
is a hit in the ray’s interval. The shader code can, for example, perform a lookup in
the texture. If the sample is fully transparent, then traversal should continue, else
it can be stopped. There is no guarantee of the order of execution for these tests,
so the shader code may need to perform some local sorting in order to get correct
blending, for example. The any hit shader can be implemented both for standard rays
and for shadow rays. As with rasterization, using a tighter polygon around the cutout
texture’s bounds (Section 13.6.2) can help reduce the number of times this shader is
invoked.

The intersection shader is executed when a ray hits a certain bounding box in the
spatial acceleration structure. It can thus be used to implement custom intersection
test code, e.g., against fractal landscapes, subdivision surfaces, and analytical surfaces,
such as spheres and cones.

In addition to ray generation shaders, both miss shaders and closest hit shaders
can generate new rays with TraceRay(). All shaders except intersection shaders can
modify the ray payload. All ray tracing shaders may also output data to UAVs. For
example, the ray generation shader can output the color of the ray that it has sent to
the corresponding pixel.

There is much innovation and research to be done in the field of combining raster-
ization and ray tracing, but also in how to exploit the new additions to the real-time
graphics APIs. Andersson and Barré-Brisebois [9] present a hybrid rendering pipeline
where these two rendering paradigms are combined. First, a G-buffer is rendered us-
ing rasterization. Direct lighting and post-processing is done using compute shaders.
Direct shadows and ambient occlusion can be done either using compute shaders or
using ray tracing. Global illumination, reflections, and transparency & translucency
are done using pure ray tracing. As GPUs evolve, bottlenecks will move around, but
a general piece of advice is:

Use raster when faster, else rays to amaze.

As always, remember to measure where your bottleneck is located (Chapter 18). Note
also that TraceRay() can be used as a work generation mechanism, i.e., a shader can
use TraceRay() to spawn several jobs in order to compute a combined result. For
example, this feature can be used for adaptive ray tracing, where more ray are sent
through pixel regions with high variance, with the goal being to improve image quality
at a relatively low cost. However, TraceRay() is likely to have many uses that were
not conceived of during the API design.
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top-level acceleration structure (TLAS)

geometry
N

geometry
N

BLAS
geometry geometry

BLAS
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instance
M

flags, etc.
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flags, etc.

instance
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Figure 26.8. Illustration of how the top level acceleration structure (TLAS) is connected to a set of
bottom-level acceleration structures (BLAS). Each BLAS can contain several sets of primitives, each
containing only triangles or procedural geometry. Every geometry and instance can be transformed
by a 3×4 matrix N or M. Note that each matrix is unique to the corresponding instance or geometry.
The TLAS contain a set of instances, which can point to a BLAS.

26.3 Top and Bottom Level Acceleration Structures
The acceleration structure for DXR is mostly opaque to the user, but there are two
levels of the hierarchy that are visible. These are called the top level acceleration
structure (TLAS) and the bottom level acceleration structure (BLAS) [59]. A BLAS
contain a set of geometries that can be considered as components of the scene. The
TLAS contain a set of instances that each point to a BLAS. This is illustrated in
Figure 26.8.

A BLAS can either contain geometries of the type triangles or procedural. The
former contains sets of triangles and the latter is associated with an intersection shader
that can implement a custom intersection test. This can be an analytical ray versus
sphere or torus test or some procedurally generated geometry, for example.

In Figure 26.8 all matrices, M and N, are of size 3 × 4, i.e., arbitrary 3 × 3
matrices plus a translation (Chapter 4). The N matrices are used to apply a one-time
transform that is performed in the beginning of the build process for the underlying
acceleration data structure (e.g., BVH or k-d tree) of the corresponding geometry.
The M matrices, on the other hand, can be updated each frame and can therefore be
used for lightweight animation.

For arbitrarily animated geometry, where triangles may be added or removed,
one has to rebuild the BLAS each frame. In these cases, even the N matrices can
be updated. If only vertex positions are updated, then a faster update of the data
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Figure 26.9. For optimized rendering using rasterization, we often group geometry per material,
here indicated by the colors of the triangle meshes. These boxes are drawn using solid lines. For
ray tracing, it is better to group geometry that is spatially close, and the corresponding boxes are
dashed.

structure can be requested in, e.g., the DXR API. Such an update will usually reduce
performance a bit, but can work well in situations where the geometry has moved
only a little. A reasonable approach may be to use these less expensive updates when
possible, and perform a rebuild from scratch every n frames in order to amortize this
cost over several frames.

Note that grouping of geometry should often be done differently when ray tracing
is used compared to rasterization. As seen in Chapter 18, for rasterization geometry
is often grouped by material parameters to exploit shader coherence during pixel
shading. Acceleration data structures for ray tracing performs better when grouping
is done using spatial locality. See Figure 26.9. Performance can suffer substantially if
for ray tracing geometry is grouped according to material instead of spatial locality.

26.4 Coherency
One of the most important ideas in both software and hardware performance optimiza-
tion is to exploit coherency during execution. We can save effort by reusing results
among different parts of a given computation. In today’s hardware, the most expen-
sive operations, in both time and energy use, are memory accesses, which are orders of
magnitude slower than simple mathematical operations. A good way to evaluate the
cost of a hardware operation is to think of the physical distance that bits have to travel
inside circuitry in order to accomplish it. Most of the time, performance optimization
focuses on exploiting memory coherency (caches) and scheduling computation around
memory latency. The GPU itself can be seen as a processor that explicitly constrains
the execution model of the programs it runs (data parallel, independent computations
threads) in order to better exploit memory coherency (Section 23.1).

In the introduction to this chapter, we discussed how ray tracing and rasterization



26.4. Coherency 13

for “first hit” visibility of screen pixels (camera rays) can be seen as different traversal
orders of the scene geometry. While the ordering does not matter much in terms
of algorithmic complexity, each has practical consequences. With both rasterization
and ray tracing we have a double for-loop. The innermost loop, unless it happens
to be quite small, is where most computation lies. As iterations happen next to
each other back-to-back in inner loops, they are the best candidates for reducing
computation by reusing data between iterations and exploiting memory access locality
(cache optimization).

A rasterizer’s inner loop is over the pixels of a given object surface. It is likely
that points over a surface exhibit high degrees of coherent computation: They may be
shaded using the same material, use the same textures, and even access these textures
(memory) in nearby locations. If we have to compute visibility for a large number
of camera pixels, we can easily walk these locations in a spatially coherent order, for
example, in small square tiles on the screen. Doing so ensures a high degree of coherent
work in the inner loop (Section 23.1). Note that coherency extends past the problem
of visibility. Rendering typically starts after we know what surfaces are visible—a
large amount of work lies in computing material properties and their interaction with
scene lighting. A rasterizer is particularly fast not only because it can compute what
objects cover which pixels in an efficient way, but because the subsequent shading
work is naturally ordered in a way that exploits coherency.

In contrast, a naive ray tracer, for a given ray in the outer loop, iterates over
all scene primitives in the inner one. Regardless of how we might avoid the overall
expense of an O(mn) double loop from m pixels and n objects, there is little coherency
to be exploited when traversing a single list of rendering primitives along a single ray.

Most of the performance optimization in a modern ray tracer thus deals with how
to “find” coherency in the ray visibility queries and subsequent shading computations.
We could say that rasterization is coherent by default, but constrained to a specific
visibility query, the camera frustum. Most of the effort when using rasterization
techniques involves how to stretch this query function in order to simulate a variety
of effects. Ray tracing, in contrast, is flexible by default. We can query visibility
from any point in any direction. However, doing so naively results in incoherent
computation that is not efficient on modern hardware architectures, and thus most of
the engineering effort is spent trying to organize the visibility queries in a coherent
manner.

With the increased flexibility of ray queries, we can render effects that are impos-
sible for a rasterizer, while still retaining high performance by exploiting coherency.
Shadows are a good example. Tracing rays for shadows allows us to more accurately
simulate the effect of area lights [35]. Shadow rays need only to intersect geometry, and
in most cases do not need to evaluate materials. These attributes reduce the cost of
hitting different objects. Compared to shading rays, all we need to evaluate is whether
a ray hits any object between the intersection point and the light source. We can thus
avoid computing normals at the intersection points, avoid texturing for solid objects,
and can stop tracing after the first solid hit has been found. In addition, shadow
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rays typically are highly coherent. For nearby pixels on the screen they have similar
origins and can be directed to the same light. Lastly, shadow maps (Section 7.4) can-
not sample light visibility at the exact frequency of screen pixels, resulting in under-
or oversampling. In the latter case, the increased flexibility of shadow rays can even
result in better performance. Rays are generally more expensive, but, by avoiding
oversampling, we can perform fewer visibility queries. That is also why shadow maps
were among the first graphical applications of ray tracing in games [90].

26.4.1 Scene Coherency
Primitives in a three-dimensional scene fall into natural spatial relations when we
consider the distances among them. These relationships do not necessarily guarantee
coherency of computation when we think of the shading work that rendering entails.
For example, an object might be close to another but use entirely different materials,
textures, and—ultimately—shading algorithms. Most algorithms and data structures
used for acceleration of object traversal in a ray tracer can be adapted to work in a
rasterizer as well, as discussed in Section 19.1. However, these data structures are
more important to tune in a ray tracer than a rasterizer. Object traversal is part of
the inner loop when tracing rays.

Most ray tracers and ray tracing APIs use some form of spatial acceleration data
structure to speed up ray visibility queries. In many cases, including the current
version of DXR, these techniques are opaque to the user, implemented under the hood
and provided as black box functionality. For this reason, the rest of this section on
coherency can be skipped if you are focused on understanding basic DXR functionality
and related techniques. However, this section is important if you want to get a grasp
on performance, particularly for larger scenes. If you know your system relies on a
particular spatial structure, learning the advantages and costs related to that scheme
can help you improve the efficiency of your rendering engine.

Creating data structures to exploit scene coherency in visibility calculations is
particularly challenging for real-time rendering, as in most cases the scene changes
frame to frame under animation. In fact, though we previously noted how the ray
tracer’s outer loop allows for more flexibility in visibility queries, the rasterizer’s outer
loop can more naturally handle animated scenes, as well as procedurally generated
and out-of-core (too large to fit in memory all at once) geometry. Rasterization’s loop
structure is another reason why these spatial data structures are typically present in
relatively simplified form in raster-based rendering solutions.

The idea behind a spatial data structure is that we can organize geometry inside
partitions of the space in ways that group objects that are near each other in scene in
the same volume. A simple way to achieve this partitioning is to subdivide the entire
scene in a regular grid, and store in each cube (voxel) a list of the primitives that
intersect it. Then, ray traversal can be accomplished by visiting each cell in a line
given by the ray direction, starting at the ray origin. Traversal is the same algorithm
as conservative line rasterization, only in three dimensions. The basic idea is to find
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Figure 26.10. From left to right: a fine uniform grid and cells traversed by a ray until intersection, a
coarser uniform grid, a two-level grid and a uniform grid with embedded proximity cloud information,
where dark means that the closest object to that grid cell is near and light means that it is far away.

the distance to the next voxel in the x, y, and z directions, take the smallest of these,
and move along the ray to that voxel. The leftmost illustration in Figure 26.10 shows
how a ray might visit cells in a uniform grid. These three values are then updated
and the new smallest value is used to move to the next voxel. Every time we find a
non-empty cell during the traversal, we need to test the ray against all the primitives
contained in the cell. As soon as we find a hit in the cell, the traversal in the grid does
not need to continue. For shadow rays (any hit), we can simply stop, but for standard
rays, we need to test all the primitives in the cell and choose the closest. Havran’s
thesis [31] provides a great overview.

Since a scene might have small, detailed objects with many tiny primitives in some
regions and large, coarse ones in others, a fixed grid size might not work everywhere.
This scenario is referred to as the “teapot in a stadium” problem [27], where a complex
teapot, the focus of attention, falls into a single cell and so receives no benefit from the
efficiency structure. Even though they are rapid to construct and simple to traverse,
naive uniform grids are currently rarely used for most ray tracing. Variants exist
that improve grid efficiency and are thus more practical. Grids can be nested in a
hierarchical fashion, with higher-level large cells containing finer grids as needed. Two-
level nested grids are particularly fast to construct in parallel on GPUs [42], and have
been successfully employed in early animated GPU real-time ray tracing demos [80].

Hash tables can be employed to create an infinite virtual grid, where only the
occupied cells store data in memory (Section 25.1.2). Another strategy is to store, in
empty cells, the distance in grid units to the closest non-empty cell. This system is
called proximity clouds [14]. During the traversal, these distances allow us to safely
skip many cells in the line marching routine that are guaranteed to be empty. Recently,
irregular grids [64] elaborate on the idea of skipping empty space efficiently. These
have been shown to be competitive with the state-of-the-art in spatial acceleration for
ray tracing of animated scenes. Figure 26.10 shows a few of these grid variants.

If we develop the idea of a hierarchical grid to its limit, we can imagine having
the lowest resolution grid possible, made of two cells on each axis, as the top-level
data structure, and recursively split each non-empty cell into another 2× 2× 2. This
structure is an octree and is discussed in Section 19.1.3. Going even further, we can
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Figure 26.11. Some popular spatial subdivision data structures. From left to right: a hierarchical
grid, a BVH of axis-aligned bounding rectangles, and a k-d tree.

imagine using a plane to split a single cell in two at each level of our hierarchical data
structure. This yields the binary BSP tree if the plane choice is arbitrary, or a k-d tree
if the planes are constrained to be axis-aligned (Section 19.1.2). If instead of using a
single axis-aligned plane we use a pair at each level of the data structure, we obtain
a bounded interval hierarchy (BIH) tree [84], which has fast construction algorithms
associated with it.

Today the most popular acceleration structures for ray tracing is the bounding
volume hierarchy (BVH) and is described in Section 19.1.1. See Figure 26.11. For ex-
ample, hierarchical bounding volume structures are used in Intel’s Embree kernels [88],
in AMD’s Radeon-Rays library [8], and in NVIDIA’s RT Cores hardware [58] and Op-
tiX system [62].

Properties of Spatial Data Structures
The design landscape of spatial data structure is large. We can have deep hierarchies
that take more indirections to traverse but adapt to the scene geometry better, versus
shallower data structures that are less flexible but can be more compact in memory.
We can have rigid subdivision schemes that are easy to build and require little memory
per node, versus more expressive schemes with many degrees of freedom on how to
carve space. For example, BVH schemes can potentially have known memory costs in
advance of their creation, require fewer subdivisions, and be better at skipping empty
space. However, they are more complex to build and may require more storage to
encode each node.

In general, the trade-offs of a spatial data structure are:

• Construction quality.

• Speed of construction.

• Speed to update, for animated scenes.

• Run-time traversal efficiency.
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Construction quality roughly translates to how many primitives and how many
cells must be traversed to find a ray intersection. Speed of construction and traversal
are often specific to a given hardware. To complicate matters further, all these data
structures allow for multiple traversal and construction algorithms and for different
encoding of the nodes (compression and memory layout). Moreover, any degree of
freedom in the way space is subdivided also implies the existence of different heuristics
to guide these choices.

It is misleading to talk about data structure performance without specifying all
these parameters. In practice, the state of the art data structures are different for
static versus dynamic scenes, where construction algorithms have to operate under
strict time constraints not to take more time than is saved in the ray tracing portion
of the rendering. On the hardware side, marked differences exist between CPU and
GPU (highly parallel) algorithms. Best practices for the latter are still evolving, as
GPU architectures are more recent and have seen more changes over time [46].

Finally, the specifics of the rays we need to trace also matter, with certain struc-
tures performing best at coherent rays (e.g., camera rays, shadows, or mirror reflec-
tions) and other being more tolerant of incoherent, randomly scattered rays (typically
for diffuse global illumination or ambient occlusion methods).

With all this in mind, it is worth noting that state-of-the-art ray tracing perfor-
mance has historically been achieved through some variant of a k-d tree or bounding
volume hierarchy (BVH) made of axis-aligned boxes (AABBs) [83]. The main differ-
ence between the two, theoretically, is that a k-d tree partitions the space in disjoint
cells, while the nodes in a BVH typically overlap. This means that BVH traversal
can only stop when an intersection is found and no other unexamined bounding vol-
ume left in the tree can be in front of it. A k-d tree, however, can stop immediately
when a primitive intersection is found as it is possible to enforce a strict front-to-
back traversal order. This theoretical advantage of a k-d tree is not always realized.
For example, a BVH might be more efficient at skipping empty space and bounding
primitives tightly, thus compensating for the inability of stopping early by reaching
an intersection faster [83].

In practice, surveying a number of renderers used for film production [21, 67] and
for interactive rendering [8, 58, 62, 88], we could not find any that currently use k-d
trees. All present-day systems examined rely on BVHs in some form for general ray
tracing.2 Other structures are more efficient for particular classes of primitives or
algorithms. For example, point clouds and photon mapping use three-dimensional k-d
trees to store samples. Octree and grid structures find use for voxel data.

BVHs can often fit scenes well, have fast and high-quality construction algorithms,
and can easily handle animated scenes, especially if they exhibit good temporal co-
herency. Moreover it is possible, as we will see in the next section, to construct
compact, shallow bounding volume trees that use less memory and less bandwidth to

2By default, the Brazil renderer circa 2012 used three-dimensional and four-dimensional (for mo-
tion blur) k-d trees for scenes [28].
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achieve good scene partitioning, which is a key property for high performance traversal
of the data structure.

Construction Schemes
It is outside the scope of this chapter to present all algorithmic variants and permu-
tations in spatial data structures used for ray tracing, but we can present a few of the
key ideas. See also Section 19.1 and Chapter 25 for more information on these topics.

Construction algorithms can be divided into object partitioning and space parti-
tioning schemes. Object partitioning considers objects or primitives (e.g., individual
triangles) that are near each other in space and clusters them in the nodes of the data
structure. It is a process that can be performed “top-down,” at each step deciding how
to split the scene objects into subgroups, or “bottom-up” (Chapter 25), by iteratively
clustering objects. In contrast, spatial partitioning makes decisions on how to carve
space in different regions, distributing the objects and primitives into the resulting
nodes of the data structure. These constructions are typically “top-down.” Spatial
partitions are usually much slower to construct, and hard to employ for real-time
rendering, but they can be more efficient for casting rays.

Spatial partitioning is the most obvious way of constructing a k-d tree, but the
same principles can be applied to BVHs as well. For example, the split BVH scheme
by Stich et al. [62, 77] considers both object and spatial splits, allowing a given object
to be referenced by more than one BVH leaf. Doing so results in significant savings in
ray shooting costs compared to a regular BVH, while still being faster than building
a purely spatial partitioning structure. See Figure 26.12.

Regardless of which scheme is used, choices have to be made at each step of the
construction. For bottom up, we have to decide which primitives to aggregate, and
for top down, where to put the spatial splits used to subdivide the scene. See Fig-
ure 26.13. The optimal choices are the ones that minimize total ray tracing time,
which in turn depends on the details of the traversal algorithm and the set of rays
over which visibility is to be determined. In practice, exactly evaluating how these
choices influence ray tracing is impossible, and thus heuristics must be employed.

The most common approximation for build quality is the surface area heuristic
(SAH) [53] (Section 22.4). It defines the following cost function:

1

Aroot
(Cnode

∑
x∈I

Ax + Cprim

∑
x∈L

PxAx),

where Ax is the surface area for a node x, Px is the number of primitives in a given
node, I and L are the sets of inner and leaf (non-empty) nodes in the tree, and
Cnode, Cprim are the average cost estimates (i.e., time) to intersect a node and a
primitive (see also Section 25.2.1). The SAH, which is the surface area of the bounding
volume, cell, or other volume, is proportional to the probability of a random ray
striking it. This equation sums up the weighted probability cost of a hierarchy of
primitives. The cost computed is a reasonable estimate of the efficiency of the structure
formed.
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Figure 26.12. Top row: stages of a bottom-up object partitioning BVH build. Bottom row: stages
of a top-down BVH construction allowing for spatial splits.

Figure 26.13. Different choices for a vertical splitting plane. From left to right: half-way cut, a cut
isolating big primitives, a median cut resulting in two nodes with an equal amount of primitives, an
SAH-optimized cut which minimizes the area of the node where most primitives will land, and thus
the probability of hitting the node with most expensive data in it.

When tuned in its constants, SAH correlates well with the actual cost of tracing
random, long rays and performs well in practice. See Figure 26.14. These assumptions
do not always hold and sometimes better heuristics are possible, especially if we know
in advance or can sample the particular distribution of rays we are going to trace in
a scene [5, 26]. SAH provides an estimate of the ray tracing cost given a fully built
spatial data structure, and can be used to inform choices during construction. SAH
optimized constructions reward among the set of possible choices those that yield small
nodes with many primitives. See Figure 26.13.

In practice algorithms that build SAH optimal structures can be slow, and thus
further approximations are employed. For k-d trees, one approximate SAH strategy is
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Figure 26.14. Heat maps representing the number of BVH node traversals, per pixel, of first-hit
camera rays in the Sponza atrium scene. Red areas required more than 500 traversal steps. The
left image is generated using a BVH constructed with the median-cut heuristic and the right image
shows an SAH-optimized BVH builder. (Images courtesy of Kostas Anagnostou.)

to evaluate the heuristic cost for a small, fixed number of splitting planes and picking
at each level the one that gives the most efficient value. This strategy, called binning,
can also be used for rapidly building BVH structures top-down [86].

For animated scenes, the time constraints on construction algorithms are strict, so
tree quality might be traded for faster builds. For spatial subdivision, median cuts
might be used [84], where the space is split in the middle along the scene’s longest
axis, or in a rotating x, y, z sequence.

Object partitioning can be even faster. Lauterbach et al. [47] introduced linear
bounding volume hierarchy (LBVH) construction, in which scene primitives are sorted
by using space-filling curves. These are explained in Section 25.2.1 and shown in
Figure 25.7. Such curves have the property of defining an ordering of locations in space,
where adjacent points in the curve’s sorted order are likely to be near each other in the
three-dimensional scene. Object sorting can be computed efficiently, even on highly
parallel processors such as GPUs, and is used to cluster neighboring bounding volumes,
building the hierarchy bottom-up. In 2010, Pantaleoni and Luebke [23, 63] proposed
an improvement called hierarchical linear bounding volume hierarchy (HLBVH) that
results in better construction speed and quality. In their scheme the top levels of the
BVH are built in an SAH-optimized fashion, while the bottom levels are built similarly
to the original LBVH method.

One advantage of using BVHs is that the maximum memory needed for the struc-
ture is known in advance, as the number of cluster nodes needed has a limit [86]. Yet,
building spatial structures from scratch still has, at best, a linear cost in the number of
primitives. Per-frame rebuilds can end up being a significant bottleneck for rendering
performance, especially if not many rays are traced in a given frame. An alternative is
to avoid rebuilds and “refit” the spatial data structure to the moved objects. Refitting
is particularly easy in the case of a BVH. First the leaf node’s bounding volume is
recomputed for the leaf node containing the animated primitive, using this object’s
current geometry. The parent of this leaf node is then examined. If it no longer can
contain the leaf node, it is expanded and its parent is tested, on up the chain. This



26.4. Coherency 21

process continues until the parent needs no modification, or the root node is reached.
Another option when examining the parent leaf is to always minimize its bounding
volume based on its children’s bounding volumes. This will provide a better tree, but
will take a bit more time.

The refitting approach is fast but results in a degradation of the spatial data
structure quality under large displacements during animation, as bounding volumes
expand over time due to objects that were clustered together in the hierarchy but are
no longer near each other. To address this shortcoming, iterative algorithms exist to
perform tree rotations and incrementally improve the quality of a BVH [40, 44, 94].

Currently, the state of the art for parallel, GPU BVH builders is represented by
the treelets method [40], which works by starting from a fast but low-quality BVH
and optimizing its topology. It can construct high-quality trees, comparable to a split
BVH, but at a rate of tens of millions of primitives per second on modern hardware,
only slightly slower than HLBVH.

Two-level hierarchies, as used in DXR, are also common for animated scenes. As
we have seen in Section 26.3, these hierarchies allow for fast rebuilds if objects move
rigidly, by animated matrix transforms. In this case, only the top-level hierarchy
needs to be rebuilt, while the expensive bottom-level per-object hierarchies do not
need to be updated. Moreover, if objects animate non-rigidly, but without significant
displacement (for example, the leaves of a tree swaying in the wind), refitting can still
be used in the BLAS to avoid full rebuilds (Section 25.7). However, a problem of two-
level hierarchies is that their quality is generally not as good as spatial data structures
that are built for an entire scene at once. Imagine, for example, having many objects
near each other, each with its own BLAS but with overlapping bounding volumes in
the TLAS. A ray passing through a region of space where multiple BLAS overlap must
traverse each of them, while a single, unified spatial data structure built for the entire
scene would not have suffered from the same problem. In order to ameliorate this issue,
Benthin et al. [10] proposed the idea of “re-braiding” two-level hierarchies, allowing
the trees of different objects to merge in order to improve ray traversal performance.

Traversal Schemes
Similar to construction of spatial data structures, a substantial amount of research
has been done on ray traversal algorithms.

Intersecting a ray with a hierarchical data structure is a form of tree traversal.
Starting at the root, a ray is tested against the structure representation that divides
the scene into subspaces. A ray might intersect with more than a single subspace, and
thus need to visit multiple branches of the tree. For example, in the case of a binary
BVH, for a given tree node a ray might intersect zero, one, or two bounding volumes
corresponding to the children of the node. In a k-d tree, each node is associated with a
plane that divides the space in two. If a ray intersects this plane, and the intersection
is within the node’s bounds, the ray will need to visit both subspaces. Thus, in general,
each time more than one subspace has to be considered for ray intersection, we must
decide which to traverse first. When an intersection is not found, or if we need more
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Figure 26.15. From left to right, different restarts in a stackless k-d tree traversal scheme. Each time
a leaf is reached and no intersection is found, the ray gets “shortened,” moving its origin past the
leaf’s boundary.

than one intersection, we also need a way to backtrack and visit the other subspaces
not yet tested.

Typically we sort the child subspaces of a node front to back, relative to the ray
direction, traverse the closest subspace, and push the other children nodes on to a
stack in sorted order. If backtracking is needed, a node is popped from the stack and
traversal resumes from there. The cost of managing a stack is insignificant if we trace
a single ray at a time. However, on GPUs we typically traverse thousands of rays in
parallel at the same time, each requiring its own stack. Doing so creates a significant
memory traffic overhead.

For k-d trees and other spatial data structures that always partition the scene in
disjoint subspaces, it is simple to implement stackless ray tracing [22, 37] if we are
willing to pay the cost of restarting the traversal from the root after reaching a leaf.
If we always traverse the nearest subspace and we reach a leaf but not manage to find
a ray intersection, we can simply move the ray origin past the farthest intersection
with the bounds of leaf then trace the ray again as if it was an entirely new one. See
Figure 26.15.

This strategy, also known as ray shortening, is not applicable to BVHs, since
nodes may overlap. Advancing the ray past a node in a subtree might entirely miss a
bounding volume in the hierarchy that should have been traversed. Laine [45] proposes
to keep only one bit per tree level instead of a full stack, encoding a trail that separate
a binary tree into nodes that have been processed and nodes that are still candidates
for intersection. This method allows for restarts to work in a BVH, if we can compute
a consistent node traversal order for a ray each time we descend the tree.

It is possible to avoid restarts altogether if we allow for storage of extra information
in the tree, pointing at which nodes to traverse next if the ray misses a given one. These
pointers are called ropes and are applicable both to BVH and k-d trees, but can be
expensive to store and impose a fixed ray traversal order for all rays, thus not allowing
front to back visits. Hapala et al. [30], and subsequently Áfra and Szirmay-Kalos [2]
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developed algorithms using both pointers stored in the tree and a small per-ray data
structure to allow stackless traversal of binary BVHs, preserving the same order as a
stack-based solution, with backtracking instead requiring full restarts.

In practice, these stackless schemes might not always be faster, even on GPUs [4],
than stack-based approaches, due to the extra work they require to restart or back-
track, the increased size of the spatial data structure, and in some cases by having a
worse traversal order. Binder and Keller [11] devised a constant-time stackless back-
tracking algorithm that was the first shown to outperform stack-based traversal on
modern GPUs. Recently, Ylitie et al. [93] proposed to exploit compression schemes
to perform GPU stack-based traversal, largely avoiding the memory traffic overheads
of GPU per-ray stack bookkeeping. The traversal is performed on a wide BVH, with
more than two children per node. The authors implement an efficient approximate
sorting scheme to determine a front-to-back traversal order. Furthermore, the node
bounding volumes themselves are stored in a compressed form, another way to exploit
scene coherency.

26.4.2 Ray and Shading Coherency
Even if ray tracing makes it possible to compute visibility for a set of arbitrary rays,
in practice most rendering algorithms will generate sets of rays that exhibit varying
degrees of coherency. The simplest case are rays used to determine which parts of
the scene are visible from a pinhole camera through each of the screen’s pixels. These
will all have the same origin, the camera position, and span only a limited solid angle
of all possible directions. Similarly coherent are rays used to compute shadows from
infinitesimal light sources. Even when we consider rays that bounce off surfaces, such
as reflection rays, some coherency is retained. For example, imagine two rays emitted
from a camera, corresponding to two neighboring pixels, which hit a surface and
bounce off it in the direction of perfect mirror reflection. Often it will happen that
the two rays hit the same object in the scene, meaning the two hit points will be near
each other in space and likely have similar surface normals. The two reflected rays
will then have similar origins and directions. See Figure 26.16.

Incoherent rays are generated when we need to randomly sample the hemisphere of
outgoing directions from a given surface point. For example, this happens if we want
to compute ambient occlusion and diffuse global illumination. For glossy reflection
rays, the rays are more coherent. In general, we can assume that ray tracing does
exhibit some amount of coherency in the set of rays we need to trace and in the hit
points for which we need to calculate shading. This ray coherency is something that
we can try to leverage in order to accelerate our rendering algorithms.

One of the earliest ideas for exploiting ray coherency was to cluster rays together.
For example, instead of single rays, we could intersect scene primitives with groups
of parallel rays, called ray bundles. Bundles intersection with scene primitives can be
performed by exploiting the GPU rasterizer, using orthographic projection to store
the positions and normals of each object into offscreen buffers. Each pixel in these
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Figure 26.16. Rays traveling from the camera and hitting a surface spawn more rays for shadows and
reflections. Note how all these new sets rays are still fairly coherent, similar to each other.

Figure 26.17. From left to right, a sphere is intersected with: a beam, a cone and a four ray packet.

buffers captures the intersection data for a single ray [81]. Another early idea is to
group into cones [7], or small frusta (beams) [32], representing an infinite number of
rays with the same origin and spanning a limited set of directions. This idea of beam
tracing was further explored and generalized by Shinya et al. [71] in a system they
called pencil tracing. In this scheme, a “pencil” is defined by including variability for
a ray’s origin and direction. As an example, if a ray’s direction is allowed to vary by
up to a certain angle, the set of rays so defined forms a solid cone [7].

Such schemes assume large areas of continuity. When object edges or areas of large
curvature are found, the pencils devolve into a set of tighter pencils or individual rays
to capture these features. Computing material and lighting integrals over solid angles
is also usually difficult. Because of these limitations, pencil-related methods have
seen little general use. A notable exception is cone tracing of voxelized geometry,
a technique that recently has been used on GPUs to approximate indirect global
illumination (Section 11.5.7).

A more flexible way of exploiting ray coherence is to organize rays in small arrays
called packets, which are then traced together. Similar to pencils, these collections
of rays sometimes need to be split, e.g., if they need to follow different branches of a
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BVH. See Figure 26.17. However, as a packet is just a data structure, not a geometric
primitive, splitting is much easier, as we only need to create more packets, each with
a subset of the original rays. Packet tracing [85] allows us to traverse spatial data
structures and to compute object intersections for small groups of rays in parallel,
and it is thus well suited for SIMD computation. Practical implementations [88] use
packets of a fixed size, tuned to the width of the processor’s SIMD instructions. If
some of the rays are not present in a packet, such as after a split, flags are used to
mask off the corresponding computations.

While packet tracing can be efficient, and has even been recently adapted to work in
demanding VR applications [38], it still imposes limitations on how rays are generated.
Moreover, its performance can suffer if rays diverge and too many packets need to be
split. Ideally we want ways to leverage modern data-parallel architectures even for
incoherent ray tracing.

The idea of packet tracing is to use SIMD instructions to intersect multiple rays
with a single primitive, in parallel. However, we could use the same instructions
to intersect a single ray with multiple primitives, thus not needing to keep packets of
rays. If our spatial hierarchies are constructed using shallow trees with high branching
factors, instead of deep binary ones, we can parallelize traversal by testing a single
ray with multiple children nodes at the same time. These data structures can be
built by partially flattening binary ones. For example, if we collapse every other level
of a binary BVH, a 4-wide BVH that encodes the same nodes can be constructed.
The resulting data structure is called a multi-bounding volume hierarchy (MBVH),
sometimes also referred to as a shallow BVH or wide BVH [15, 19, 87].

Some applications of ray tracing, such as path tracing and its variants, work on
single rays and cannot easily generate coherent packets. This limitation does not
mean that if we look at all the rays traced to generate an image, we would not find
some degrees of ray coherency. Many rays in a scene might travel from similar origins
in similar directions, even if we are not able to explicitly trace them together. In
these cases, we might be able to dynamically sort the rays over which we want to
compute visibility in order to create groups of rays that can be processed coherently.
These ideas were pioneered by Pharr et al. [65], in what they call “memory-coherent
ray tracing,” a system that uses the nodes of a spatial subdivision structure to store
batches of rays. Instead of traversing each ray through the spatial structure until an
intersection is found, rays in each node are tested against the primitives contained in
the node, if any, and those rays that did not result in hits are propagated to their
immediate neighbors. The spatial subdivision hierarchy is thus visited in breadth-first
order.

It is also possible to avoid explicitly storing rays in the scene’s spatial data structure
by instead using quantized ray directions and origins to compute a hash value. We
can then keep a queue of rays that still need processing and sort them by their hash
key. This queue is equivalent to creating a virtual grid over the five-dimensional space
of positions and directions, then grouping rays into the cells of this grid. The idea of
keeping queues of rays and dynamically sorting them is called ray stream tracing or
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ray reordering, and have been successfully adopted both on CPUs and GPUs [46, 82].
Lastly, it is important to note that many rendering applications are dominated by

shading operations, not by visibility. This is certainly the case today for raster-based
real-time rendering. While tracing coherent ray also helps shading coherency, it does
not guarantee it. Two rays might hit points that are close to each other in the scene,
but correspond to separate objects which need to use different shaders and textures.
This is particularly challenging for GPUs that rely on wide SIMD units and execute
the same instructions in lockstep over large vectors, called wavefronts (Section 23.2).
If rays in a given GPU wavefront might need to use different shading logic, dynamic
branching must be employed, leading to wavefront divergence and larger shaders that
typically use more registers and result in low occupancy.

Sorting can be extended to address shading coherency. Instead of using queuing
and reordering rays only for intersection purposes, rays can also be stored in queues
after they hit objects. These queues can then be sorted again based on the materials
that are associated with the hit points, and then shaders can be evaluated in coherent
batches. The idea of separating material evaluation from visibility is called deferred
shading. The same term is used both in ray tracing systems and in raster-based
systems (Section 20.1), which achieve such decoupling via screen-space g-buffers.

Deferred shading has been successfully applied to offline, production path tracers
for movies [18, 48], sorting millions of rays, even out-of-core, and to smaller queues
both for CPU and GPU ray tracing [3, 46]. However, for real-time rendering, we
have to keep in mind that, even in systems that are able to reorder work to exploit
coherency, sorting can add significant overhead. Moreover, if too few rays are in flight
at the same time, there may be no useful coherency among them. In addition, as rays
hit scene primitives, evaluated material shaders can generate new rays, which might
in turn trigger the execution of other shaders, recursively. Shader evaluation might
thus need to be suspended until results from the newly spawned rays are computed.
This behavior imposes constraints on the ordering of shader execution, reducing the
opportunities to dynamically recover coherency.

In practice, we have to be mindful of employing rendering algorithms that are aware
of ray and shading coherency. Even when we need to use incoherent rays, there are still
ways for an application to minimize divergence. For example, ambient occlusion and
other global illumination effects need to sample the hemisphere of outgoing directions
for each pixel on screen. As this process can be expensive, a common technique is to
shoot only a few samples per pixel and then reconstruct the final result using bilateral
filtering. This usually results in sampling directions that are different pixel to pixel,
and thus, incoherent. An optimized implementation might instead make sure that
directions repeat at regular intervals over small numbers of pixels and order the tracing
so all the pixels with similar directions are processed at the same time [43, 50, 68].

Shading can be a major source of divergence, even more than ray tracing, as we
might need completely different programs based on what objects we hit. Ideally, we
would like to avoid interleaving complex shading and ray tracing. For example, we
could precompute shading and retrieve cached results on ray hits. Some of these
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Figure 26.18. To the left, an image using ray traced ambient occlusion with one occlusion ray per
pixel. A denoising algorithm uses this image together with optional auxiliary image data to produce
a denoised image, on the right. Examples of auxiliary image data include the depth component per
pixel, normals, motion vectors, and the minimum distance to the occluders at the shading point.
Note that the denoising algorithm may feed some of its output back into the next frame’s denoising
process. (Noisy and denoised images courtesy of NVIDIA Corporation.)

strategies are already used in offline, production path tracing [21] and in interactive
ray tracing [61], but more research is needed to advance the state of the art of real-time
ray tracing. In general there is a trade-off for any ray tracing application to consider.
If all rays were equal, we can often shoot few of them, sparsely, and leverage denoising
techniques to generate the final image. However, sparse, incoherent rays are slower to
process and thus sometimes shooting more rays with higher coherence can be faster
overall.

26.5 Denoising
Rendering with Monte Carlo path tracing produces images with undesired noise, as
we have seen in Figure 26.6. The goal of a denoising algorithm is to take a noisy
image, and optionally auxiliary image data, and produce a new image that resembles
the ground truth as much as possible. In this section, we use the word “resemble”
in an informal way, since a slightly blurred image region may be preferable over a
noisy one. Denoising is particularly important for real-time ray tracing, since we
usually can afford only a few rays per pixel, which means that the rendered image
may be noisy. As an example, the PICA PICA image in Figure 26.22 was rendered
using ≈ 2.25 rays per pixel [76]. The denoising concept is illustrated in Figure 26.18.
Since one can add a feedback loop to a denoiser, as shown in the figure, temporal
antialiasing (Section 5.4.2) can be considered a basic denoising algorithm. Most (if
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not all) denoising techniques can be expressed in a simple manner as a weighted
average of the colors around the current pixel, which we enumerate as a scalar value
p. The weighted average is then [12]:

dp =
1

n

∑
q∈N

cqw(p, q), (26.3)

where dp is the denoised color value of pixel p, and cq are the noisy color values
around the current pixel (including p), and w(p, q) is a weighting function. There are
n pixels in the neighborhood, called N , around p that are used in this formula, and this
footprint is usually square. One can also extend the weighting function so that it uses
information from the previous frame, e.g., w(p, p−1, q, q−1), where the subscript −1
indicates information from that frame. The weighting function may access a normal
nq if needed and the previous color value cp−1

, for example. See Figures 24.2, 24.3,
26.19, 26.20, and 26.21 for examples of denoising.

The field of denoising has emerged as an important topic for realistic real-time
rendering using ray tracing-based algorithms. In this section, we will provide a short
overview of some important work and introduce some key concepts that can be useful.
We refer to the survey by Zwicker et al. [97] as an excellent starting point to learn
more. Next, we focus on algorithms and tricks that work well with low sample counts,
that is, just one or a few samples per pixel.

It is common to render a G-buffer (Chapter 20) in order to create a noise-free
set of render targets that can be used as auxiliary image data for denoising [13, 69,
76]. Ray tracing can then be used to generate noisy shadows, glossy reflections,
and indirect illumination, for example. Another trick that some methods use is to
divide direct and indirect illumination and denoise them separately, as they have
different properties—the indirect illumination is generally quite smooth, for example.
To increase the number of samples used during denoising, it is also common to include
some kind of temporal accumulation or temporal antialiasing (Section 5.4.2). Another
nice approximation is to filter what is sometimes called untextured illumination or
separation of lighting and texture [96]. To explain how this works, recall that the
rendering equation (11.2) is

Lo(p,v) =

∫
l∈Ω

f(l,v)Lo(r(p, l),−l)(n · l)+dl, (26.4)

where the emissive term Le has been omitted for simplicity. We handle only the
diffuse term, though a similar procedure can be applied to other terms as well. Next,
a reflectance term, R, is computed, which is essentially just a diffuse shading term
times texturing (in the case where the surface is textured):

R ≈ 1

π

∫
l∈Ω

f(l,v)(n · l)+dl, (26.5)



26.5. Denoising 29

Figure 26.19. Left: the shadow term after filtering. Top right: zoom-in on the shadow term using
a single sample for an area light source. Bottom left: after denoising the top right image. The
shadows are smoother where expected, and contact shadows are harder. (Images courtesy of SEED—
Electronic Arts.)

The untextured illumination U is then

U =
Lo

R
, (26.6)

i.e., the textured term has been divided away and so U should contain mostly just
lighting. So, the renderer can compute Lo using the rendering equation and perform
a texture lookup plus diffuse shading to obtain R, which gives us the untextured
illumination. This term can then be denoised into, say, D, and the final shading is
then ≈ DR. This avoids having to deal with textures in the denoising algorithm, which
is advantageous, since textures often contain high-frequency content, e.g., edges. The
untextured illumination trick is also similar to what Heitz et al. [35] do when they
split up the final image into a noisy shadow term and analytical shading for area light,
perform denoising on the shadow term, and finally recombine the images. This type
of split is often called a ratio estimator .

Soft shadow denoising can be done using spatio-temporal variance-guided filtering
(SVGF) [69], which is used by SEED [76], for example. See Figure 26.19. SVGF was
originally developed for denoising one-sample-per-pixel images with path tracing, i.e.,
using a G-buffer for primary visibility and then shooting a single secondary ray with
shadow rays at both the first and second hits. The general idea is to use temporal
accumulation (Section 5.4.2) to increase the effective sample count, and a spatial
multi-pass blur [16, 29] where the blur kernel size is determined by an estimate of the
variance of the noisy data.

Variance can be computed incrementally as more samples, xi, are added using the
following techniques. First, the sum of the squared differences is computed as

sn =

n∑
i=1

(xi − x̄n)2, (26.7)
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where x̄n is the average of the first n numbers. The variance is then

σ2
n =

sn
n
. (26.8)

Now, assume that we have already computed sn using x1, . . . , xn, and we get one more
sample xn+1 that we want to include in the variance computation. The sum is then
first updated using

sn+1 = sn + (xn+1 − x̄n)(xn+1 − x̄n+1), (26.9)

and after than sn+1 can be used to compute σ2
n+1 using Equation 26.8. In SVGF, a

method like this is used to estimate the variance over time, but it switches to using a
spatial estimation if, for example, a disocclusion is detected, which makes the temporal
variance non-reliable. For soft shadows, Llamas and Liu [51, 52] use a separable cross-
bilateral filter (Section 12.1.1) where both filter weights and radius are variable.

Stachowiak presents an entire pipeline for denoising reflections [76]. Some examples
are shown in Figure 26.20. A G-buffer is first rendered and the rays are shot from
there. To reduce the number of rays traced, only one reflection ray and one shadow
ray at the reflection hit per 2 × 2 pixels are shot. However, reconstruction of the
image is still done at full resolution. The reflection rays are stochastic and importance
sampled. “Stochastic” means that, as more randomly-generated rays are added, the
solution converges to the correct result. “Importance sampled” means that rays are
sent in the directions where they are expected to be more useful for the final result,
e.g., toward the peak of the BRDF. The image is then filtered using a method similar
to one used in screen-space reflections [75] (Section 11.6.5) and upsampled to full image
resolution at the same time. This filter is also a ratio estimator [35]. This technique
is combined with temporal accumulation, a bilateral cleanup pass, and finally, TAA.
Llamas and Liu [51, 52] present a different reflection solution based on anisotropic
filter kernels.

Metha et al. [54, 55, 56] take on a more theoretical approach based on Fourier
analysis for light transport [17] in order to develop filtering methods and adaptive
sampling techniques. They develop axis-aligned filters that are faster to evaluate than
the more accurate sheared filters. Doing so leads to higher performance. For more
information, consult Metha’s PhD thesis [57].

For ambient occlusion (AO), Llamas and Liu [51, 52] use a technique with an axis-
aligned kernel [54] implemented using a separable, cross-bilateral filter (Section 12.1.1)
for efficiency. The kernel size is determined by the minimum distance to an object
found during tracing of AO rays. The filter size is small when an occluder is close,
larger when farther away. This relationship gives a more pronounced shadow for close
occluders and a smoother, blurrier effect when the occluders are farther away. See
Figure 26.21.

There are also several methods for denoising global illumination [13, 51, 55, 69, 70,
76]. It is also possible to use specialized filters for different types of effects, which is the
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Figure 26.20. Top: a slice of an image showing only the reflection term after denoising. Bottom
left: before denoising using 1 reflection ray per 2 × 2 pixels. Bottom middle: the variance term. The
brighter the pixel, the higher the variance, which leads to a larger blur kernel. Bottom right: the
denoised reflection image at full resolution. (Images courtesy of SEED—Electronic Arts.)

approach taken by the researchers at Frostbite and SEED [9, 36, 76]. See Figure 26.22.

The Frostbite real-time light map preview system [36] relies on a variance-based
denoising algorithm. Light map texels store the usual accumulated sample contribu-
tions and tracks their variance. When new path tracing result comes in, the light
map is blurred locally based on each texel variance before it is presented to the user.
The variance-based blur is similar to SVGF [69], but it is not hierarchical in order
to avoid light map elements belonging to different meshes leaking on to each other.
When blurring, only samples from the same light map element are blurred together
using per texel element indices. To not bias the convergence, the original light map is
left untouched.

Another alternative is to perform denoising in texture space [61]. It requires all
surface locations to have unique uv-space values. Shading is then done at the texel of
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Figure 26.21. The ambient occlusion in the top image was ray traced using one ray per pixel, followed
by denoising. The zoomed images show, from left to right: ground truth, screen-space ambient
occlusion, ray traced ambient occlusion with one sample per pixel per frame, and denoised from one
sample per pixel. The denoised image does not capture all of the smaller contact shadows, but is still
a closer match than screen-space ambient occlusion. (Images courtesy of NVIDIA Corporation.)

the hit point at a surface. Denoising in texture space can be as simple as averaging the
shading from texels with similar normals in, for example, a 13× 13 region. Munkberg
et al. include texels if cos θ > 0.9, where θ is the angle between the normal at the texel
being denoised and another normal at a texel being considered for inclusion. Some
other advantages are that temporal averaging is straightforward in texture space, that
shading costs can be reduced by computing the shading at a coarser level, and that
shading can be amortized over several frames.

Up until now, we have assumed that objects are still and that the camera is a single
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Figure 26.22. A final image of Project PICA PICA rendered with a combination of rasterization and
ray tracing, followed by several denoising filters. (Image courtesy of SEED—Electronic Arts.)

point. However, if motion is included and images are rendered with depth of field,
then depths and normals can be noisy as well. For such use cases, Moon et al. [60] have
developed an anisotropic filter that computes a covariance matrix of world position
samples per pixel. This is used to estimate optimal filtering parameters at each pixel.

With deep learning algorithms [24, 25], it is possible to exploit the massive amount
of data that can be generated by a game engine or other rendering engine and use that
to produce a neural network to generate a denoised image as well. The idea is to first
set up a convolutional neural network and then train the network using both noisy
and noise-free images. If done well, the network will learn a large set of weights that
it can use later in an inference step to denoise a noisy image without knowledge of any
additional noise-free images. Chaitanya et al. [13] use a convolutional neural network
with a feedback loops in all steps of the encoding pipeline. These were added in order to
increase the temporal stability and thus reduce flicker during animations. It is possible
to train a denoiser, even without access to clean references, using (uncorrelated) noisy
image pairs [49]. Doing so can make training simpler, since no ground truth images
need to be generated.

It is clear that denoising is and will continue to be an important topic for realistic
real-time rendering, and that more research will continue in this area.
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26.6 Texture Filtering
As described in Sections 3.8 and 23.8, rasterization shades pixels in 2×2 groups called
quads. This is done so that an estimate of the texture footprint can be computed and
used by the mipmapping texturing hardware units. For ray tracing, the situation
is different. Here, rays are often shot independent of each other. One can imagine
a system where each eye ray intersects the triangle plane with two additional rays,
with the first being offset by one pixel horizontally and the second being offset by one
pixel vertically. In many cases, such a technique could generate accurate texture filter
footprints, but only for eye rays. However, what happens if the camera is looking at a
reflective surface, and the reflection ray hits a textured surface? In that case, it would
be ideal to perform a filtered texture lookup that also takes into account the nature
of the reflection and the amount of distance that the rays travel. The same holds for
refractive surfaces.

Igehy [39] has provided a sophisticated solution to this problem using a technique
called ray differentials. Together with each ray, one needs to store{

∂o

∂x
,
∂o

∂y
,
∂d

∂x
,
∂d

∂y

}
(26.10)

as additional data together with the ray. Recall that o is the ray origin and d is the ray
direction (Equation 26.1). Since both o and d have three elements, the ray differential
above needs 4× 3 = 12 additional numbers to store these. When shooting an eye ray,
∂o/∂x = ∂o/∂y = (0, 0, 0), since the ray starts from a single point. However, ∂d/∂x
and ∂d/∂y will model how much each ray spreads when passing through a pixel. Ray
differentials need to be updated when being transferred from one point to another.
In addition, Igehy derives formulae not only for how ray differential change when a
ray differential is reflected and refracted, but also for how to evaluate the differential
normals for triangles with interpolated normals.

Another simpler method is based on tracing cones, first presented by Amanatides in
1984 [7]. In this work the focus is mostly on antialiasing geometry, but it briefly men-
tions that ray cones can also be used for texture filtering when ray tracing. Akenine-
Möller et al. [6] present one way to implement ray cones together with a G-buffer
where the curvature at the first hit is also taken into account. The filter footprint
is dependent on the distance to the hit, the spread of the ray, the normal at the hit
point, and curvature. However, as curvature is provided only at the first hit, aliasing
can occur for deep reflections. They also present variants of ray differentials that are
combined with G-buffer rendering, and a comparison of these methods is provided.

Four different methods for texture filtering are shown in Figure 26.23. Using mip
level 0 (i.e., no mipmapping) causes severe aliasing. Ray cones provide a slightly
sharper result for this scene, while ray differentials give a result closer to ground
truth. Ray differentials usually provides a better estimate of the texture footprint,
but can sometimes also be overblurry. Ray cones can be both overblurred and under-
blurred, in their experience. Akenine-Möller et al. provide implementations of both
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Figure 26.23. A reflective hemisphere in a room with a checkerboard pattern on the walls and ceiling,
with a wooden floor. To the right, zoom-ins of one region is shown for several different texture filtering
methods. Middle-top: a ground truth rendering with 1024 samples per pixel using a bilinear texture
lookup in each. Middle-bottom: always accessing mip level 0 with bilinear filtering. Right-top: using
ray cones. Right-bottom: using ray differentials. (Images courtesy of NVIDIA Corporation.)

ray differentials and ray cones for texture filtering for ray tracing.

26.7 Speculations
The new types of shaders proposed by the extended API (Section 26.2) allow for
complex shape intersections and material representations. Having the ability to trace
rays leads to obvious applications related to the rendering of meshes, such as surface
lighting, shadowing, reflection, refraction, and path-traced global illumination.

Thinking outside the box, these capabilities could enable new use cases not con-
sidered during design of the API. It will be exciting to see what developers will come
up with in the near future. Will the ray generation shader become the new compute
shader? This section discusses and explores some possibilities.

With the help of denoising algorithms (Section 26.5), the new ray tracing capa-
bilities should make it possible to render more advanced surfaces and more complex
lighting in real time. One such improvement is the evaluation of all reflections using
ray tracing instead of screen-space reflections, such as in the game Battlefield V. Do-
ing so results in better grounded objects as well as improved specular reflections and
occlusion on meshes of any shape. Techniques such as screen-space reflection work in
part because of simplifying assumptions, e.g., that the surface’s reflection is symmet-
ric around the principal reflection direction. Ray tracing should give more accurate
results in cases where reflection samples are distributed in a more complex fashion on
the BRDF hemisphere.

Subsurface scattering is another related phenomenon that could be better simu-
lated. A first version of subsurface scattering has already been achieved using the
new API features by tracing the scattered light within a mesh, temporally accumu-
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lating the samples from many directions in texture space, and applying a denoising
algorithm [9]. Globally, shadows, indirect lighting and ambient occlusion would also
benefit from using ray tracing, resulting in any mesh looking more grounded in a
scene [35, 51].

The use of participating media (Chapter 14) is becoming more important in real-
time applications, such as games. How volumetric rendering will evolve and perhaps
diverge from the usual voxel and ray marching based methods is worth keeping a close
eye on. New approaches could emerge that use ray tracing and rely on Woodcock
tracking [95] for importance sampling, coupled with a denoising process.

Billboard-like rendering (Chapter 13) is commonly used in real-time applications.
Rendering particles for a view is challenging by itself. Sorting is required for a correct
transparency effect, overdraw is an issue for large particles, and lighting performance
and quality trade-off need to be taken into account. Particles are also a challenge to
render in reflections due to their typical camera-facing nature. How should a particle
be aligned in a path tracing framework when it can be intersected by rays coming from
any direction? Should it have a new representation and leverage intersection shaders
to always align each billboard with the incoming ray? To top it off, due to their
inherent dynamic nature, animated particles will have to update their representation
in the acceleration structure every frame (Section 26.3). This update can happen for a
few large particles or many small ones, e.g., smoke plumes or sparks, for which it can
be challenging to optimize the spatial acceleration structure for fast tracing through
the world.

Similar to shadow sampling, casting rays also opens the door to more accurate
intersection and visibility queries. As an example, particle collision could be handled
more accurately. The usual screen-space approximations have issues with resolution
dependency, and the evaluation of the front depth layer thickness prevents particles
from falling behind this layer in some cases. Could an entire rigid body physics system
be implemented on the GPU using ray casting? Furthermore, ray tracing could also
be used to query visibility between two positions. This ability could be valuable for
audio reverb simulations, gameplay, and AI systems for element-to-element visibility.

A new shader type, not mentioned earlier, added by the ray tracing API is the
callable shader . It has the ability to spawn shader work from a shader in a pro-
grammable fashion, something that was only possible in CUDA before [1]. This type
of shader is not yet available and could be restricted to use only within the ray trac-
ing shader set. Depending on how this shader is implemented and its performance,
this functionality could be a valuable new general tool, especially if it would be avail-
able in other shader stages, such as compute. For instance, a callable shader could
remove many shader permutations usually generated in an engine for the sake of per-
formance, e.g., each permutation representing an optimized post-process shader for
a set of scene settings. Having optional setting-dependent code being in a callable
shader could reduce the non-negligible memory used by all the permutations, i.e., if
one has to deal with five performance-critical settings then instead of 25 = 32 shaders,
only one shader would be dispatched, with potential calls to 5 sub-shaders. It could
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Figure 26.24. The bistro exterior scene, generated using a path tracer, with a depth-of-field effect,
that was implemented using DXR. (Image courtesy of NVIDIA Corporation.)

also enable artist-authored shader graphs, not only applied for material definition as
is usually done today, but for every part of the rendering chain in a more modular
fashion: decal volumes application on transparent meshes, light functions, participat-
ing media material, sky, and post-process. Let us take the example of decal volumes
on transparent meshes. Those are usually defined with a shader graph authored by
artists. It is straightforward to apply them on opaque meshes in a deferred context by
modifying the G-buffer content of every pixel intersecting a volume (Section 20.2). In
forward rendering, or during ray tracing, it would require a shader that could evaluate
all the different decal shader graphs authored by artists in a project. These kinds of
huge shaders are impractical. With callable shaders, it would be possible to call the
shader representing each decal volume intersecting a world space position and having
it modify the material considered for shading. Using this feature will depend on imple-
mentation and usage: can a shader be called and return an arbitrary data structure?
Can multiple shaders be called at once? How are the parameters transmitted? Will
they have to be sent through global memory? Can spawned shaders be constrained
to a compute unit to be able to communicate through shared memory? Is it going to
be a fire-and-forget, e.g., without return, call?

Answers to these questions will without a doubt drive further innovations and what
is achievable in the near future. To conclude, one result rendered with DXR is shown
in Figure 26.24, another on the cover of this book. The future looks bright!
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Further Reading and Resources
See this book’s website, realtimerendering.com, for the latest information and free
software in this field. Shirley’s mini-books on ray tracing [72, 73, 74] are an excellent
introduction to ray tracing in different stages, and are now free PDFs. One of the best
resources for production-level ray tracing is the book “Physically Based Rendering”
by Pharr et al. [66], also now free. Suffern’s book Ray Tracing from the Ground
Up [79] is relatively old, but is wide-ranging and discusses implementation concerns.
For an introduction to DXR, we recommend the SIGGRAPH 2018 course by Wyman
et al. [91] and Wyman’s DXR tutorial [92]. To learn more about path tracing in
production rendering, see the recent SIGGRAPH courses by Fascione et al. [20, 21].
The special issue of ACM TOG [67] has more articles on the modern use of path
tracing and other production rendering techniques. Denoising is discussed in detail
in a survey by Zwicker et al. [97], though this resource from 2015 will not cover the
latest research.
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Trous Wavelet Transform for fast Global Illumination Filtering,” High Performance Graphics,
pp. 67–75, 2010. Cited on p. 29
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Index

acceleration structure, 11–12
bottom level, 11
top level, 11

ambient occlusion, 27
any hit shader, see shader

Battlefield V, 35
beam tracing, 24
billboard, 36
binning, 20
BLAS, see acceleration structure, bottom level
bottom level acceleration structure, see

acceleration structure
bounding volume

hierarchy, see under spatial data structure
BVH, see spatial data structure, bounding

volume hierarchy

callable shader, see shader
camera ray, see eye ray
closest hit shader, see shader
compute shader, see shader
cone tracing, 24

deep learning, 33
deferred ray tracing, see ray tracing
deferred shading, 26
denoising, 2, 27–33, 36
DXR, 8, 9

eye ray, 3, 4

filter
joint bilateral, 26, 30

HLBVH, see spatial data structure, bounding
volume hierarchy, hierarchical linear

intersection shader, see shader
irregular grids, 15

k-d tree, see under spatial data structure

MBVH, see spatial data structure, bounding
volume hierarchy, multi-

miss shader, see shader

noise, 27

octree, see under spatial data structure

packet tracing, 24
particle, 36
path tracing, 2, 7–8
payload, 9
pencil tracing, 24
proximity clouds, 15

quad, 34

rasterization, 1
ratio estimator, 29
ray, 9

definition, 2
reordering, 25
shadow, 9
shortening, 22
standard, 9

ray casting, 6
ray cones, 34
ray depth, 5
ray differentials, 34–35
ray generation shader, see shader
ray stream tracing, 25
ray tracing, 1–38

deferred, 9
stackless, 22

rayTraceImage(), 6–7
reflections, 30, 35
rendering equation, 28
ropes, 22

45



46 Index

SAH, see surface area heuristic
shade(), 3–7, 10
shader

any hit, 10
callable, 36
closest hit, 10
compute, 9
intersection, 10
miss, 10
ray generation, 9

shadow ray, see ray
soft shadows, 29
spatial data structure

BIH tree, 16
bounding volume hierarchy, 16–23, 25

hierarchical linear, 20, 21
multi-, 25

BSP tree, 16
k-d tree, 16–19, 21, 22
octree, 15

standard ray, see ray
subsurface scattering, 35
surface area heuristic, 18–20

texturing
filtering, 34–35
ray tracing, 34–35

TLAS, see acceleration structure, top level
top level acceleration structure, see acceleration

structure
trace(), 3–7, 9
TraceRay(), 9–10
treelets, 21

untextured illumination, 28

variance, 29

Whitted ray tracing, 5, 7


